Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T03:30:23.066Z Has data issue: false hasContentIssue false

Random partial orders: concentration of the height

Published online by Cambridge University Press:  01 July 2016

B. Bollobás*
Affiliation:
University of Cambridge

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Invited Papers
Copyright
Copyright © Applied Probability Trust 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bollobás, B. and Winkler, P. M. (1988) The longest chain among random points in Euclidean space. Proc. Amer. Math. Soc. 103, 347353.CrossRefGoogle Scholar
Frieze, A. M. (1991) On the length of the longest monotone subsequence in random permutation. Ann. Appl. Prob. 1, 301305.CrossRefGoogle Scholar
Logan, B. F. and Shepp, L. A. (1977) A variational problem for Young tableaux. Adv. Math. 26, 206222.CrossRefGoogle Scholar
Vershik, A. Μ. and Kerov, S. V. (1977) Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux. Dokl. Akad Nauk. SSSR 233, 10241028.Google Scholar
Winkler, P. M. (1985) Random orders. Order 1, 317325.CrossRefGoogle Scholar