Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T07:23:22.440Z Has data issue: false hasContentIssue false

Random nested tetrahedra

Published online by Cambridge University Press:  01 July 2016

Gérard Letac*
Affiliation:
Université Paul Sabatier
Marco Scarsini*
Affiliation:
Univerità D'Annunzio
*
Postal address: Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 31062 Toulouse, France. Email address: [email protected]
∗∗ Postal address: Dipartimento di Scienze, Univerità D'Annunzio, 65127 Pescara, Italy. Email address: [email protected]

Abstract

In a real n-1 dimensional affine space E, consider a tetrahedron T0, i.e. the convex hull of n points α1, α2, …, αn of E. Choose n independent points β1, β2, …, βn randomly and uniformly in T0, thus obtaining a new tetrahedron T1 contained in T0. Repeat the operation with T1 instead of T0, obtaining T2, and so on. The sequence of the Tk shrinks to a point Y of T0 and this note computes the distribution of the barycentric coordinates of Y with respect to (α1, α2, …, αn) (Corollary 2.3). We also obtain the explicit distribution of Y in more general cases. The technique used is to reduce the problem to the study of a random walk on the semigroup of stochastic (n,n) matrices, and this note is a geometrical application of a former result of Chamayou and Letac (1994).

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman & Hall, London.Google Scholar
Bárányi, I., Beardon, A. F. and Carne, T. K. (1996). Barycentric subdivision of triangles and semigroups of Möbius maps. Mathematica 43, 165171.Google Scholar
Chamayou, J.-F. and Letac, G. (1994). Transient random walk on stochastic matrices with Dirichlet distribution. Ann. Prob. 22, 424430.CrossRefGoogle Scholar
Chen, R., Goodman, R. and Zame, A. (1984). On the limiting distribution of two random sequences. J. Multivariate Anal. 14, 221230.Google Scholar
Chen, R., Lin, E. and Zame, A. (1981). Another arc sine law. Sankhyā. Series A 43, 371373.Google Scholar
Cowan, R. (1997). Shapes of rectangular prisms after repeated random division. Adv. Appl. Prob. 29, 2637.CrossRefGoogle Scholar
Devroye, L., Letac, G. and Seshadri, V. (1986). The limit behavior of an interval splitting scheme. Statistics & Probability Lett. 4, 183186.CrossRefGoogle Scholar
Eisenberg, B. and Sullivan, R. (1996). Random triangles in n dimensions. American Mathematical Monthly 103, 308318.Google Scholar
Johnson, N. L. and Kotz, S. (1993). On Limit Distributions Arising from Iterated Random Subdivisions of an Interval. Department of Statistics, University of North Carolina.Google Scholar
Kendall, D. G. (1984). Shape manifolds, procustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81121.CrossRefGoogle Scholar
Kendall, D. G. (1985). Exact distributions for spaces of random triangles in convex sets. Adv. Appl. Prob. 17, 308329.CrossRefGoogle Scholar
Kendall, D. G. and Le, H.-L. (1986). Exact shape densities for random triangles in convex polygons. Adv. Appl. Prob. 18, 5972.Google Scholar
Kendall, D. G. and Le, H.-L. (1987). The structure and explicit determination of convex-polygonally generated shape densities. Adv. Appl. Prob. 19, 896916.Google Scholar
Kennedy, D. P. (1988). A note on stochastic search methods for global optimization. Adv. Appl. Prob. 20, 476478.Google Scholar
Mannion, D. (1988). A random chain of triangle shapes. Adv. Appl. Prob. 20, 348370.CrossRefGoogle Scholar
Mannion, D. (1990a). Convergence to collinearity of a sequence of random triangle shapes. Adv. Appl. Prob. 22, 831844.Google Scholar
Mannion, D. (1990b). The invariant distribution of a sequence of random collinear triangle shapes. Adv. Appl. Prob. 22, 845865.Google Scholar
Mannion, D. (1993). Products of 2 × 2 random matrices. Ann. Appl. Prob. 3, 11891218.CrossRefGoogle Scholar
Mannion, D. (1994). The volume of a tetrahedron whose vertices are chosen at random in the interior of a parent tetrahedron. Adv. Appl. Prob. 26, 577596.Google Scholar
Miles, R. E. (1983). On the repeated splitting of a planar domain. In Proc. Oberwolfach Conf. on Stochastic Geometry, Geometric Statistics and Stereology. ed. Ambartzumian, R. and Weil, W.. Teubner, Leipzig, pp. 110123.Google Scholar
Volodin, N. A., Johnson, N. L. and Kotz, S. (1993). Use of moments in distribution theory: a multivariate case. J. Multivariate Anal. 46, 112119.Google Scholar
Watson, G. S. (1986). The shapes of a random sequence of triangles. Adv. Appl. Prob. 18, 156169.Google Scholar