Published online by Cambridge University Press: 01 July 2016
In this paper, we analyze the diffusion limit of a discrete-time queueing system with constant service rate and connections that randomly enter and depart from the system. Each connection generates periodic traffic while it is active, and a connection's lifetime has finite mean. This can model a time division multiple access system with constant bit-rate connections. The diffusion scaling retains semiperiodic behavior in the limit, allowing for both short-time analysis (within one frame) and long-time analysis (over multiple frames). Weak convergence of the cumulative arrival process and the stationary buffer-length distribution is proved. It is shown that the limit of the cumulative arrival process can be viewed as a discrete-time stationary-increment Gaussian process interpolated by Brownian bridges. We present bounds on the overflow probability of the limit queueing process as functions of the arrival rate and the connection lifetime distribution. Also, numerical and simulation results are presented for geometrically distributed connection lifetimes.
Supported by the National Science Foundation under grants NSF ANR 99-80544.