Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T19:39:39.416Z Has data issue: false hasContentIssue false

Quermass-interaction processes: conditions for stability

Published online by Cambridge University Press:  01 July 2016

W. S. Kendall*
Affiliation:
University of Warwick
M. N. M. van Lieshout*
Affiliation:
CWI
A. J. Baddeley*
Affiliation:
University of Western Australia
*
Postal address: Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK. Email address: [email protected]
∗∗ Postal address: Centre for Mathematics and Computer Science, PO Box 94079, 1090 GB, Amsterdam, The Netherlands.
∗∗∗ Postal address: Department of Mathematics, University of Western Australia, Nedlands, WA 6907, Australia.

Abstract

We consider a class of random point and germ-grain processes, obtained using a rather natural weighting procedure. Given a Poisson point process, on each point one places a grain, a (possibly random) compact convex set. Let Ξ be the union of all grains. One can now construct new processes whose density is derived from an exponential of a linear combination of quermass functionals of Ξ. If only the area functional is used, then the area-interaction point process is recovered. New point processes arise if we include the perimeter length functional, or the Euler functional (number of components minus number of holes). The main question addressed by the paper is that of when the resulting point process is well-defined: geometric arguments are used to establish conditions for the point process to be stable in the sense of Ruelle.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. J. (1981). The Geometry of Random Fields. Wiley, New York.Google Scholar
Baddeley, A. J. and Gill, R. D. (1997). Kaplan–Meier estimators for interpoint distance distributions of spatial point processes. Ann. Statist. 25, 263292.Google Scholar
Baddeley, A. J., Kendall, W. S. and van Lieshout, M. N. M. (1996). Quermass-interaction processes. University of Warwick Department of Statistics. Research Report 293, 1996.Google Scholar
Baddeley, A. J. and van Lieshout, M. N. M. (1992). ICM for object recognition. In Computational Statistics, Vol 2, eds. Dodge, Y. and Whittaker, J.. Physica/Springer, Heidelberg/New York, pp. 271286.Google Scholar
Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math. 47, 601619.Google Scholar
Baddeley, A. J. and Møller, J. (1989). Nearest-neighbour Markov point processes and random sets. Internat. Statist. Review 57, 89121.Google Scholar
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Statist. Soc. B 36, 192236.Google Scholar
Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). J. R. Statist. Soc. B 48, 259302.Google Scholar
Clifford, P. (1990). Markov random fields in statistics. In Disorder in Physical Systems, eds. Grimmett, G. R. and Welsh, D. J. A.. OUP, Oxford, pp. 1932.Google Scholar
Clifford, P. and Nicholls, G. (1994). Comparison of birth-and-death and Metropolis–Hastings Markov chain Monte Carlo for the Strauss process. Manuscript, Department of Statistics, Oxford University.Google Scholar
Eckhoff, J. (1980). Die Euler-Charakteristik von Vereinigungen konvexer Mengen im oRd . Abh. Math. Sem. Hamburg 50, 135146.CrossRefGoogle Scholar
Fiksel, T. (1984). Estimation of parametrized pair potentials of marked and non-marked Gibbsian point processes. Elektronische Informationsverarbeitung und Kybernetika 20, 270278.Google Scholar
Fiksel, T. (1988). Estimation of interaction potentials of Gibbsian point processes. Statistics 19, 7786.Google Scholar
Gates, D. J. and Westcott, M. (1986). Clustering estimates for spatial point distributions with unstable potentials. Ann. Inst. Statist. Math. 38, 123135.CrossRefGoogle Scholar
Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Proceedings Seminaire Européen de Statistique, ‘Stochastic Geometry: Likelihood and Computation’, eds. Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman and Hall/CRC, Boca Raton, FL, pp. 79140.Google Scholar
Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21, 359373.Google Scholar
Grimmett, G. R (1973). A theorem about random fields. Bull. Lond. Math. Soc. 5, 8184.Google Scholar
Groemer, H. (1978). On the extension of additive functionals on classes of convex sets. Pacific J. Math. 75, 397410.Google Scholar
Hadwiger, H. (1957). Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin.Google Scholar
Häggström, O. van Lieshout, M. N. M. and Møller, J. (1996). Characterisation results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Research Report R-96-2040, University of Aalborg, 1996. To appear in Bernoulli.Google Scholar
Hamilton, W. D. (1971). Geometry for the selfish herd. J. Theoret. Biol. 31, 295311.CrossRefGoogle ScholarPubMed
Hammersley, J. M. Lewis, J. W. E. and Rowlinson, J. S. (1975). Relationships between the multinomial and Poisson models of stochastic processes, and between the canonical and grand canonical ensembles in statistical mechanics, with illustrations and {Monte Carlo} methods for the penetrable sphere model of liquid-vapour equilibrium. Sankhya A 37, 457491.Google Scholar
Helterbrand, J. D. Cressie, N. and Davidson, J. L. (1994). A statistical approach to identifying closed object boundaries in images. Adv. Appl. Prob. (SGSA), 26, 831854.Google Scholar
Jensen, J. L. (1993). Asymptotic normality of estimates in spatial point processes. Scand. J. Statist. 20, 97109.Google Scholar
Jensen, J. L. and Møller, J. (1991). Pseudolikelihood for exponential family models of spatial point processes. Ann. Appl. Prob. 1, 445461.Google Scholar
Kallenberg, O. (1983). Random Measures, 3rd edn, rev. & enl. Academic Press, London.CrossRefGoogle Scholar
Kelly, F. P. and Ripley, B. D. (1976). A note on Strauss's model for clustering. Biometrika 63, 357360.CrossRefGoogle Scholar
Kendall, W. S. (1990). A spatial Markov property for nearest-neighbour Markov point processes. J. Appl. Prob. 28, 767778.Google Scholar
Kendall, W. S. (1998). Perfect simulation for the Area-Interaction Point Process. In Probability Towards the Year 2000, eds. Accardi, L. and Heyde, C. C.. Springer, New York, pp. 218234.Google Scholar
Kendall, W. S. (1997). On some weighted Boolean models. In Advances in Theory and Applications of Random Sets, eds. Jeulin, D. and Decker, L.. École des Mines, Fontainebleau, pp. 105120.Google Scholar
Kendall, W. S. and Møller, J. (1999) Perfect Metropolis-Hastings simulation of locally stable point processes. Research Report 347, Department of Statistics, University of Warwick, Coventry, UK.Google Scholar
Klee, V. (1980). On the complexity of d-dimensional Voronoi diagrams. Archiv der Math. 34, 7580.Google Scholar
Klein, W. (1982). Potts-model formulation of continuum percolation. Phys. Rev. B 26, 26772678.Google Scholar
van Lieshout, M. N. M. (1994). Stochastic annealing for nearest-neighbour point processes with application to object recognition. Adv. Appl. Prob. 26, 281300.Google Scholar
Likos, C. N., Mecke, K. R. and Wagner, H. (1995). Statistical morphology of random interfaces in microemulsions. J. Chem. Phys. 102, 93509361.Google Scholar
McMullen, P. and Schneider, R. (1983). Valuations on convex bodies. In Convexity and its Applications, eds. Gruber, P. and Wills, J. M.. Birkhäuser, Basel, pp. 170247.Google Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York.Google Scholar
Mecke, K. R. (1994). Integralgeometrie in der Statistichen Physik. Reine Physik Vol. 25, Harri Deutsch, Frankfurt.Google Scholar
Mecke, K. R. (1996). A morphological model for complex fluids. J. Phys. Condens. Matter 8, 96639667.Google Scholar
Møller, J., (1994). Discussion contribution. Scand. J. Statist. 21, 346349.Google Scholar
Møller, J., (1999). Markov chain Monte Carlo and spatial point processes. In Proceedings Séminaire Européen de Statistique, ‘Stochastic Geometry: Likelihood and Computation’, eds. Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman and Hall/CRC, Boca Raton, FL, pp. 141172.Google Scholar
Møller, J. and Waagepetersen, R. (1996). Markov connected component fields. Research Report R-96-2009, University of Aalborg.Google Scholar
Moyeed, R. A. and Baddeley, A. J. (1995). Stochastic approximation for the MLE of a spatial point process. Scand. J. Statist. 18, 3950.Google Scholar
Naimann, D. Q. and Wynn, H. P. (1992). Inclusion-exclusion-Bonferroni identities and inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist. 20, 4376.Google Scholar
Naimann, D. Q. and Wynn, H. P. (1993). Independence number, Vapnis-Chervonenkis dimension, and the complexity of families of sets. Discrete Math. 154, 203216.Google Scholar
Naimann, D. Q. and Wynn, H. P. (1997). Abstract tubes, improved inclusion-exclusion identities and inequalities, and importance sampling. Ann. Statist. 25, 19541983.Google Scholar
Ogata, Y. and Tanemura, M. (1981). Estimation for interaction potentials of spatial point patterns through the maximum likelihood procedure. Ann. Inst. Statist. Math. 33, 315338.CrossRefGoogle Scholar
Ogata, Y. and Tanemura, M. (1984). Likelihood analysis of spatial point patterns. J. R. Statist. Soc. B 46, 496518.Google Scholar
Ogata, Y. and Tanemura, M. (1989). Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns. Ann. Inst. Statist. Math. 41, 583600.Google Scholar
Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley, New York.Google Scholar
Penttinen, A. (1984). Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method (Jyväskylä Studies in Computer Science, Economics and Statistics 7). University of Jyväskylä, Jyväskylä, Finland.Google Scholar
Preston, C. J. (1973). Generalised Gibbs states and Markov random fields. Adv. Appl. Prob. 5, 242261.Google Scholar
Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and application to statistical mechanics. Random Structure Algorithms 9, 223252.Google Scholar
Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. Lond. Math. Soc. 15, 188192.Google Scholar
Rowlinson, J. S. (1980). Penetrable sphere models of liquid-vapor equilibrium. Adv. Chem. Phys. 41, 157.Google Scholar
Rowlinson, J. S. (1990). Probability densities for some one-dimensional problems in statistical mechanics. In Disorder in Physical Systems, eds. Grimmett, G. R. and Welsh, D. J. A.. Clarendon, Oxford, pp. 261276.Google Scholar
Ruelle, D. (1969). Statistical Mechanics. Wiley, New York.Google Scholar
Särkkä, A., (1993). Pseudo-likelihood Approach for Pair Potential Estimation of Gibbs Processes (Jyväskylä Studies in Computer Science, Economics and Statistics 22). University of Jyväskylä, Jyväskylä, Finland.Google Scholar
Schneider, R. (1993). Convex bodies: the Brunn-Minkowski theory. Encyclopedia of mathematics and its applications, vol. 44. Cambridge University Press, Cambridge.Google Scholar
Sherman, S. (1973). Markov random fields and Gibbs random fields. Israel J. Math. 14, 92103.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and its Applications. Wiley, New York.Google Scholar
Strauss, D. J. (1975). A model for clustering. Biometrika 63, 467475.Google Scholar
Takacs, R. (1983). Estimator for the Pair-potential of a Gibbsian Point Process. Institutsbericht 238, Institut für Mathematik, Johannes Kepler Universität Linz, Austria.Google Scholar
Takacs, R. (1986). Estimator for the pair potential of a Gibbsian point process. Statist. 17, 429433.Google Scholar
Tjelmeland, H. and Holden, L. (1993). Semi-Markov random fields. In Geostatistical Troia'92, Vol. 1, ed. Soares, A.. Kluwer Academic, Amsterdam, pp. 479492.Google Scholar
Widom, B. and Rowlinson, J. S. (1970). New model for the study of liquid-vapor phase transitions. J. Chem. Phys. 52, 16701684.Google Scholar
Wilson, R. J. (1972). Introduction to Graph Theory. Oliver and Boyd, Edinburgh.Google Scholar