Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T18:29:45.900Z Has data issue: false hasContentIssue false

Processus de branchement en champ moyen et réaction PCR

Published online by Cambridge University Press:  01 July 2016

Didier Piau*
Affiliation:
Université Claude Bernard Lyon-I
*
Adresse postale: LaPCS, UFR de Mathématiques, Université Claude Bernard Lyon-I, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne Cedex, France. Adresse email: [email protected]

Abstract

Sun and Waterman model DNA mutations during the PCR reaction by a non-canonical branching process. Mean-field approximated values fit the simulated values surprisingly well. We prove this as a theoretical result, for a wide range of the parameters. Thus, we bound explicitly the biases, in law and in the mean, that the mean-field approximation induces in the random number of mutations of a DNA molecule, as a function of the initial number of molecules, of the number of PCR cycles, of the efficiency rate and of the mutation rate. The range where we prove that the approximation is good contains the observed mutation rates in many actual PCR reactions.

Résumé

Résumé

Sun et Waterman modélisent les mutations de l'ADN qui apparaissent au cours de la réaction PCR par un processus de branchement non canonique. Ils observent un accord surprenant entre les données simulées et une approximation de type champ moyen. Nous montrons que cette approximation est valide sur un domaine étendu de l'ensemble des parametres. Nous majorons explicitement le biais qu'elle introduit, en loi et en moyenne, dans le nombre de mutations subies par une molécule d'ADN, en fonction du nombre de molécules présentes au départ, du nombre de cycles PCR effectués, du taux d'efficacité de la réaction et du taux de mutation. Le domaine de validité que nous établissons contient en particulier les valeurs des taux de mutation observés couramment.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2001 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Beaudry, A. et Joyce, G. (1992). Directed evolution of an RNA enzyme. Science 257, 635–41.Google Scholar
[2] Joffe, A. (1993). A new martingale in branching random walk. Ann. Appl. Prob. 3, 11451150.CrossRefGoogle Scholar
[3] Landweber, L., Simon, P. et Wagner, T. (1998). Ribozyme engineering and early evolution. Bioscience 48, 94103.Google Scholar
[4] Lindvall, T. (1992). Lectures on the Coupling Method. John Wiley, New York.Google Scholar
[5] Sun, F. (1995). The polymerase chain reaction and branching processes. J. Comput. Biol. 2, 6386.Google Scholar
[6] Sun, F. et Waterman, M. S. (1997). Whole genome amplification and branching processes. Adv. Appl. Prob. 29, 629668.CrossRefGoogle Scholar
[7] Tsang, J. et Joyce, G. (1996). Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J. Molec. Biol. 262, 3142.CrossRefGoogle ScholarPubMed
[8] Wang, D. et al. (2000). Estimating the mutation rate during error-prone polymerase chain reaction. J. Comput. Biol. 7, 143158.CrossRefGoogle ScholarPubMed
[9] Weiss, G. et von Haeseler, A. (1995). Modeling the polymerase chain reaction. J. Comput. Biol. 2, 4961.CrossRefGoogle ScholarPubMed