Article contents
Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson-Voronoi tessellation and a Poisson line process
Published online by Cambridge University Press: 01 July 2016
Abstract
In this paper, we give an explicit integral expression for the joint distribution of the number and the respective positions of the sides of the typical cell 𝒞 of a two-dimensional Poisson-Voronoi tessellation. We deduce from it precise formulae for the distributions of the principal geometric characteristics of 𝒞 (area, perimeter, area of the fundamental domain). We also adapt the method to the Crofton cell and the empirical (or typical) cell of a Poisson line process.
Keywords
MSC classification
Secondary:
60G55: Point processes
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 2003
References
[1]
Ambartzumian, R. V. (1976). A note on pseudo-metrics on the plane. Z. Wahrscheinlichkeitsth.
37, 145–155.CrossRefGoogle Scholar
[2]
Ambartzumian, R. V. (1982). Combinatorial Integral Geometry, edited and with an appendix by Baddeley, A.
John Wiley, New York.Google Scholar
[3]
Baccelli, F. and Błaszczyszyn, B. (2001). On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications. Adv. Appl. Prob.
33, 293–323.Google Scholar
[4]
Calka, P. (2001). Mosaïques poissoniennes de l'espace euclidien. Une extension d'un résultat de R. E. Miles. C. R. Acad. Sci. Paris Sér. I Math. 332, 557–562.Google Scholar
[5]
Calka, P. (2002). The explicit expression of the distribution of the number of sides of the typical Poisson–Voronoi cell. Preprint, 02-02 LaPCS, Université Claude Bernard Lyon 1.Google Scholar
[6]
Gilbert, E. N. (1962). Random subdivisions of space into crystals. Ann. Math. Statist.
33, 958–972.CrossRefGoogle Scholar
[7]
Goldman, A. (1996). Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien. Prob. Theory Relat. Fields
105, 57–83.Google Scholar
[8]
Goudsmit, S. (1945). Random distribution of lines in a plane. Rev. Modern Phys.
17, 321–322.Google Scholar
[9]
Kumar, S. and Singh, R. N. (1995). Thermal conductivity of polycrystalline materials. J. Amer. Ceramics Soc.
78, 728–736.Google Scholar
[11]
Mecke, J. (1980). Palm methods for stationary random mosaics. In Combinatorial Principles in Stochastic Geometry, ed. Ambartzumian, R. V., Armenian Academy of Sciences Publishing House, Erevan, pp. 124–132.Google Scholar
[12]
Mecke, J., Schneider, R., Stoyan, D. and Weil, W. (1990). Stochastische Geometrie. Birkhäuser, Basel.Google Scholar
[13]
Meijering, J. L. (1953). Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep.
8, 270–290.Google Scholar
[14]
Miles, R. E. (1964). Random polygons determined by random lines in a plane. Proc. Nat. Acad. Sci. USA
52, 901–907.Google Scholar
[15]
Miles, R. E. (1964). Random polygons determined by random lines in a plane. II. Proc. Nat. Acad. Sci. USA
52, 1157–1160.Google Scholar
[16]
Miles, R. E. (1973). The various aggregates of random polygons determined by random lines in a plane. Adv. Math.
10, 256–290.Google Scholar
[17]
Möller, J., (1994). Lectures on Random Voronoi Tessellations. Springer, New York.CrossRefGoogle Scholar
[18]
Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn.
John Wiley, Chichester.Google Scholar
[20]
Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. John Wiley, Chichester.Google Scholar
[21]
Tanner, J. C. (1983). Polygons formed by random lines in a plane: some further results. J. Appl. Prob.
20, 778–787.Google Scholar
[22]
Van de Weygaert, R. (1994). Fragmenting the Universe III. The construction and statistics of 3-D Voronoi tessellations. Astron. Astrophys.
283, 361–406.Google Scholar
[23]
Zuyev, S. A. (1992). Estimates for distributions of the Voronoi polygon's geometric characteristics. Random Structures Algorithms
3, 149–162.Google Scholar
- 35
- Cited by