Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T17:25:14.476Z Has data issue: false hasContentIssue false

Particle populations and number operators in quantum theory

Published online by Cambridge University Press:  01 July 2016

J. E. Moyal*
Affiliation:
Argonne National Laboratory, Argonne, Illinois

Abstract

The purpose of the present paper is to give a general theory of the quantum mechanical representation of particle populations.

The first part of the paper, Sections 1 to 5, is devoted to a review of mathematical principles of quantum theory, with particular emphasis on the role played by probability concepts, using an approach adapted to the subsequent development of the theory of particle populations. This approach, which goes back in its essentials to von Neumann [20], leans heavily on the subsequent work of Wigner, Mackey, Jauch, Segal, Wightman and many others (see e.g., Mackey [15], Jauch [11], Streater and Wightman [26]). Sections 6 to 9 deal with the representation of finite particle populations: i.e., quantum systems where the total number of particles is an observable. In Section 10 a brief sketch is given of the generalization of the theory to infinite populations where the total number of particles is not an observable, as e.g., in the statistical theory of an infinitely extended gas (see Ruelle [22]). Finally, Section 11 treats some simple examples.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1972 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Boerner, H. (1970) Representations of Groups. North-Holland Publishing Co., Amsterdam.Google Scholar
[2] Chaiken, J. M. (1967) Finite particle representations and states of the canonical commutation relations. Ann. Phys. 42, 2380.CrossRefGoogle Scholar
[3] Cook, J. M. (1953) The mathematics of second quantization. Trans. Amer. Math. Soc. 74, 222245.CrossRefGoogle Scholar
[4] Dixmier, J. (1957) Les Algèbres d'Opérateurs dans l'Espace Hilbertien. Gauthier-Villars. Paris.Google Scholar
[5] Dunford, N. and Schwartz, J. T. (1963) Linear Operators Part II: Spectral Theory. Interscience, New York.Google Scholar
[6] Ekstein, H. (1969) Presymmetry. II. Phys. Rev. 18, 13151337.CrossRefGoogle Scholar
[7] Guichardet, A. (1968) Special Topics in Topological Algebras. Gordon and Breach, New York.Google Scholar
[8] Halmos, P. R. (1950) Measure Theory. D. Van Nostrand Co., Inc., New York.Google Scholar
[9] Henley, E. M. and Thirring, W. (1962) Elementary Quantum Field Theory. McGraw-Hill Book Co., Inc., New York.Google Scholar
[10] Hille, E. and Phillips, R. S. (1957) Functional Analysis and Semi-Groups. Amer. Math. Soc. Coll. Publ. XXXI, Providence, R. I. Google Scholar
[11] Jauch, J. M. (1968) Foundations of Quantum Mechanics. Addison-Wesley Publ. Co., Reading, Mass. Google Scholar
[12] Jost, R. (1960) Pauli Memorial Volume. Interscience, London.Google Scholar
[13] Kastler, D. (1961) Introduction à l'Électrodynamique Quantique. Dunod, Paris.Google Scholar
[14] Mackey, G. W. (1955) The Theory of Group Representations. (mimeographed notes by Fell, J. M. G. and Lowdenslager, D.). Chicago University Press, Chicago.Google Scholar
[15] Mackey, G. W. (1963) The Mathematical Foundations of Quantum Machanics. W. A. Benjamin, Inc., New York.Google Scholar
[16] Mackey, G. W. (1963) Infinite dimensional group representations. Bull. Amer. Math. Soc. 69, 628686.Google Scholar
[17] Mackey, G. W. (1965) Group Representations and Non-Commutative Harmonic Analysis. Special Lectures given at University of California, Berkeley.Google Scholar
[18] Moyal, J. E. (1962) The general theory of population processes. Acta. Math. 108, 131.Google Scholar
[19] Naimark, M. A. (1959) Normed Rings. P. Noordhoff, Gröningen.Google Scholar
[20] von neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. English translation. Princeton University Press, Princeton.Google Scholar
[21] von neumann, J. (1931) Über Funktionen von Funktional operatoren. Ann. Math. 32, 191226.Google Scholar
[22] Ruelle, D. (1969) Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York.Google Scholar
[23] Schatten, R. (1960) Norm Ideals of Completely Continuous Operators. Springer-Verlag, Berlin.Google Scholar
[24] Schweber, S. S. (1961) An Introduction to Relativistic Quantum Field Theory. Row, Peterson, Evanston, Ill. Google Scholar
[25] Segal, I. E. (1956) Tensor algebras over Hilbert spaces. Trans. Amer. Math. Soc. 81, 106134.CrossRefGoogle Scholar
[26] Streater, R. F. and Wightman, A. S. (1964) PCT, Spin and Statistics, and all that. W. A. Benjamin, Inc., New York.Google Scholar
[27] Wick, G. C., Wigner, E. P. and Wightman, A. S. (1952) Intrinsic parity of elementary particles. Phys. Rev. 88, 101105.Google Scholar
[28] Wightman, A. S. (1959) Relativistic invariance and quantum mechanics. Nuovo Cimento Suppl. 14, 8194.Google Scholar
[29] Wightman, A. S. (1960) L'invariance dans la mécanique relativiste. In Relations de Dispersion et Particles Elémentaires, 159226. Hermann, Paris.Google Scholar
[30] Wightman, A. and Gårding, L. (1954) Representations of the commutation relations. Proc. Nat. Acad. Sci. 40, 622626.Google Scholar
[31] Wightman, A. and Gårding, L. (1954) Representations of the anticommutation relations. Proc. Nat. Acad. Sci. 40, 617621.Google Scholar
[32] Wigner, E. P. (1939) On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149204.Google Scholar
[33] Wigner, E. P. (1959) Group Theory. Academic Press, New York.Google Scholar