Article contents
Overshoots over curved boundaries. II
Published online by Cambridge University Press: 01 July 2016
Abstract
We continue the study of the asymptotic behaviour of a random walk when it exits from a symmetric region of the form {(x, n): |x| ≤ rnb} as r → ∞ which was begun in Part I of this work. In contrast to that paper, we are interested in the case where the probability of exiting at the upper boundary tends to 1. In this scenario we treat the case where the power b lies in the interval [0, 1), and we establish necessary and sufficient conditions for the overshoot to be relatively stable in probability (except for the case ), and for the pth moment of the overshoot to be O(rq) as r → ∞.
MSC classification
- Type
- General Applied Probability
- Information
- Copyright
- Copyright © Applied Probability Trust 2004
Footnotes
Supported by EPSRC grant GR/N 94939.
References
- 3
- Cited by