Article contents
On the treewidth of random geometric graphs and percolated grids
Published online by Cambridge University Press: 17 March 2017
Abstract
In this paper we study the treewidth of the random geometric graph, obtained by dropping n points onto the square [0,√n]2 and connecting pairs of points by an edge if their distance is at most r=r(n). We prove a conjecture of Mitsche and Perarnau (2014) stating that, with probability going to 1 as n→∞, the treewidth of the random geometric graph is 𝜣(r√n) when lim inf r>rc, where rc is the critical radius for the appearance of the giant component. The proof makes use of a comparison to standard bond percolation and with a little bit of extra work we are also able to show that, with probability tending to 1 as k→∞, the treewidth of the graph we obtain by retaining each edge of the k×k grid with probability p is 𝜣(k) if p>½ and 𝜣(√log k) if p<½.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2017
References
- 3
- Cited by