Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T21:50:29.943Z Has data issue: false hasContentIssue false

On the total claim amount for marked Poisson cluster models

Published online by Cambridge University Press:  07 August 2019

Bojan Basrak*
Affiliation:
University of Zagreb
Olivier Wintenberger*
Affiliation:
Sorbonne Université
Petra Žugec*
Affiliation:
University of Zagreb
*
*Postal address: Department of Mathematics, University of Zagreb, Bijenička 30, Zagreb, Croatia.
**Postal address: LPSM, Sorbonne Université, 4 Place Jussieu, F-75005, Paris, France.
***Postal address: Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, Varaždin, Croatia. Email address: [email protected]

Abstract

We study the asymptotic distribution of the total claim amount for marked Poisson cluster models. The marks determine the size and other characteristics of the individual claims and potentially influence the arrival rate of future claims. We find sufficient conditions under which the total claim amount satisfies the central limit theorem or, alternatively, tends in distribution to an infinite-variance stable random variable. We discuss several Poisson cluster models in detail, paying special attention to the marked Hawkes process as our key example.

Type
Original Article
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Hackensack, NJ.CrossRefGoogle Scholar
Anderson, K. K. (1988). A note on cumulative shock models. J. Appl. Prob. 25, 220223.CrossRefGoogle Scholar
Bacry, E., Delattre, S., Hoffmann, M. and Muzy, J. F. (2013). Some limit theorems for Hawkes processes and application to financial statistics. Stoch. Process. Appl. 123, 24752499.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambrige University Press.CrossRefGoogle Scholar
Brémaud, P. (1981). Point Processes and Queues. Springer Verlag, New York.CrossRefGoogle Scholar
Brémaud, P. and Massoulié, L. (1996). Stability of nonlinear Hawkes processes. Ann. Prob. 24, 15631588.Google Scholar
Daley, D. J. (1972). Asymptotic properties of stationary point processes with generalized clusters. Z. Wahrscheinlichkeitsth. 21, 6576.CrossRefGoogle Scholar
Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, Vol. I, 2nd edn. Springer, New York.Google Scholar
Denisov, D., Foss, S. and Korshunov, D. (2010). Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16, 971994.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. Springer, Berlin.CrossRefGoogle Scholar
Faÿ, G., González-Arévalo, B., Mikosch, T. and Samorodnitsky, G. (2006). Modeling teletraffic arrivals by a Poisson cluster process. Queueing Systems 54, 121140.CrossRefGoogle Scholar
Gut, A. (2009). Stopped Random Walks, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Haight, F. A. and Breuer, H. A. (1960). The Borel-Tanner distribution. Biometrika 47, 143150.CrossRefGoogle Scholar
Hawkes, A. G. and Oakes, D. (1974). A cluster process representation of a self-exciting process. J. Appl. Prob. 11, 493503.CrossRefGoogle Scholar
Hult, H. and Samorodnitsky, G. (2008). Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14, 838864.CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes. Springer, Berlin.CrossRefGoogle Scholar
Karabash, D. and Zhu, L. (2015). Limit theorems for marked Hawkes processes with application to a risk model. Stoch. Models 31, 433451.CrossRefGoogle Scholar
Kerstan, J. (1964). Teilprozesse Poissonscher Prozesse. In Trans. Third Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Academy of Science, Prague, Czech, pp. 377–403.Google Scholar
Mikosch, T. (2009). Non-life Insurance Mathematics, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.CrossRefGoogle Scholar
Resnick, S. I. (2007). Heavy-Tail Phenomena. Springer, New York.Google Scholar
Robert, C. Y. and Segers, J. (2008). Tails of random sums of a heavy-tailed number of light-tailed terms. Insurance Math. Econom . 43, 8592.CrossRefGoogle Scholar
Stabile, G. and Torrisi, G. L. (2010). Risk processes with Non-stationary Hawkes claims arrivals. Methodology Comput. Appl. Prob. 12, 415429.CrossRefGoogle Scholar
Zhu, L. (2013). Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims. Insurance Math. Econom . 53, 544550.CrossRefGoogle Scholar