No CrossRef data available.
Published online by Cambridge University Press: 01 July 2016
In this paper we focus on the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a larger class of Poisson point processes.
The main results of this paper were obtained together with Alexander Nagaev, with whom the first author had collaborated for more than 35 years, until Alexander's tragic death in 2005. Since then, we have gathered strength and finalised this paper, strongly feeling Alexander's absence—our memories of him will stay with us forever.