Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T18:31:40.909Z Has data issue: false hasContentIssue false

On the mean normal measures of a particle process

Published online by Cambridge University Press:  01 July 2016

Rolf Schneider*
Affiliation:
Albert-Ludwigs-Universität, Freiburg
*
Postal address: Mathematisches Institut, Albert-Ludwigs-Universität, Eckerstr. 1, D-79104 Freiburg in Breisgau, Germany. Email address: [email protected]

Abstract

The (unoriented or oriented) mean normal measure of a stationary process of convex particles carries information on the mean shape of the particles and may, in particular, be useful for describing and detecting anisotropy of the particle process. This paper investigates the mean normal measure under the aspect of its determination from intersections, especially with lines or hyperplanes.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2001 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Benes, V. and Gokhale, A. (2000). Planar anisotropy revisited. Kybernetika 36, 149164.Google Scholar
[2] Campi, S., Haas, D. and Weil, W. (1994). Approximation of zonoids by zonotopes in fixed directions. Discrete Comput. Geom. 11, 419431.Google Scholar
[3] Gardner, R. J. (1995). Geometric Tomography. Cambridge University Press.Google Scholar
[4] Groemer, H. (1996). Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press.Google Scholar
[5] Goodey, P., Kiderlen, M. and Weil, W. (1998). Section and projection means of convex bodies. Monatsh. Math. 126, 3754.Google Scholar
[6] Goodey, P. and Weil, W. (1992). The determination of convex bodies from the mean of random sections. Math. Proc. Camb. Phil. Soc. 112, 419430.Google Scholar
[7] Kiderlen, M. (1999). Schnittmittelungen und äquivariante Endomorphismen konvexer Körper. , Universität Karlsruhe.Google Scholar
[8] Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
[9] Molchanov, I. S. (1995). Statistics of the Boolean model: from the estimation of means to the estimation of distributions. Adv. Appl. Prob. 27, 6386.Google Scholar
[10] Rataj, J. (1996). Estimation of oriented direction distribution of a planar body. Adv. Appl. Prob. 28, 294404.Google Scholar
[11] Rataj, J. (1996). Estimation of oriented normal direction distribution via mixed areas. Acta Stereologica 15, 7782.Google Scholar
[12] Schneider, R. (1970). Über eine Integralgleichung in der Theorie der konvexen Körper. Math. Nachr. 44, 5575.Google Scholar
[13] Schneider, R. (1982). Random hyperplanes meeting a convex body. Z. Wahrscheinlichkeitsth. 61, 379387.Google Scholar
[14] Schneider, R. (1993). Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press.Google Scholar
[15] Schneider, R. and Weil, W. (1983). Zonoids and related topics. In Convexity and its Applications, eds Gruber, P. M., Wills, J. M., Birkhäuser, Basel, pp. 296317.Google Scholar
[16] Schneider, R. and Weil, W. (1992). Integralgeometrie. Teubner, Stuttgart.Google Scholar
[17] Schneider, R. and Weil, W. (2000). Stochastische Geometrie. Teubner, Stuttgart.Google Scholar
[18] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and its Applications, 2nd edn. John Wiley, Chichester.Google Scholar
[19] Weil, W. (1987). Point processe of cylinders, particles and flats. Acta Appl. Math. 9, 103136.Google Scholar
[20] Weil, W. (1995). The estimation of mean shape and mean particle number in overlapping particle systems in the plane. Adv. Appl. Prob. 27, 102119.Google Scholar
[21] Weil, W. (1997). On the mean shape of particle processes. Adv. Appl. Prob. 29, 890908.Google Scholar
[22] Weil, W. (1997). Mean bodies associated with random closed sets. Rend. Circ. Mat. Palermo, II, Suppl. 50, 387412.Google Scholar
[23] Weil, W. (1997). The mean normal distribution of stationary random sets and particle processes. In Advances in Theory and Applications of Random Sets (Proc. Int. Symp., Fontainebleau, France), ed. Jeulin, D.. World Scientific, Singapore, pp. 2133.Google Scholar
[24] Wieacker, J. A. (1984). Translative Poincaré formulae for Hausdorff rectifiable sets. Geom. Dedicata 16, 231248.Google Scholar
[25] Wieacker, J. A. (1986). Intersections of random hypersurfaces and visibility. Prob. Theory Rel. Fields 71, 405433.Google Scholar
[26] Wieacker, J. A. (1989). Geometric inequalities for random surfaces. Math. Nachr. 142, 73106.Google Scholar
[27] Zähle, M., (1982). Random processes of Hausdorff rectifiable closed sets. Math. Nachr. 108, 4972.Google Scholar