Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T11:59:54.487Z Has data issue: false hasContentIssue false

On evaluations and asymptotic approximations of first-passage-time probabilities

Published online by Cambridge University Press:  01 July 2016

L. Sacerdote*
Affiliation:
Università di Torino
F. Tomassetti*
Affiliation:
Universita di Napoli
*
* Postal address: Dipartimento di Matematica, Universita di Torino, Via Carlo Alberto 10, 10123 Torino, Italy.
** Postal address: Dipartimento di Matematica e Applicazioni, Universita di Napoli, Via Cintia, 80126 Napoli, Italy.

Abstract

The series expansion for the solution of the integral equation for the first-passage-time probability density function, obtained by resorting to the fixed point theorem, is used to achieve approximate evaluations for which error bounds are indicated. A different use of the fixed point theorem is then made to determine lower and upper bounds for asymptotic approximations, and to examine their range of validity.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1996 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research carried out under C.N.R. contracts and under M.U.R.S.T. financial support.

References

[1] Banach, S. (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Mat. 3, 133181.Google Scholar
[2] Buonocore, A., Nobile, A. G. and Ricciardi, L. M. (1987) A new integral equation for the evaluation of the first-passage-time probability densities. Adv. Appl. Prob. 19, 784800.Google Scholar
[3] Daniels, H. E. (1969) The minimum of stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6, 399408.Google Scholar
[4] Darling, D. A. and Siegert, A. J. F. (1953) The first passage problem for a continuous Markov process. Ann. Math. Statist. 24, 624639.CrossRefGoogle Scholar
[5] Durbin, J. (1971) Boundary crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov theorem. J. Appl. Prob. 8, 431453.Google Scholar
[6] Durbin, J. (1985) The first-passage density of a Gaussian process to a general boundary. J. Appl. Prob. 22, 99122.Google Scholar
[7] Durbin, J. (1992) The first-passage density of the Brownian motion process to a curved boundary. J. Appl. Prob. 29, 291304.Google Scholar
[8] Fortet, R. (1943) Les fonctions aleatoires du type de Markoff associées a certaines equations linéaires aux derivées partielles du type parabolique. Math. Pures Appl. 21, 177243.Google Scholar
[9] Giorno, V., Lansky, P., Nobile, A. G. and Ricciardi, L. M. (1988) Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybern. 58, 387404.Google Scholar
[10] Giorno, V., Nobile, A. G., Ricciardi, L. M. and Sato, S. (1989) On the evaluation of the first-passage-time probability densities via nonsingular integral equations. Adv. Appl. Prob. 21, 2036.Google Scholar
[11] Hochstadt, H. (1989) Integral Equations. Wiley, New York.Google Scholar
[12] Karlin, S. and Taylor, H. M. (1981) A Second Course in Stochastic Processes. Academic Press, New York.Google Scholar
[13] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985) A note on first-passage-time and some related problems. J. Appl. Prob. 22, 346359.Google Scholar
[14] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985) Exponential trends of Ornstein-Uhlenbeck first-passage-time densities. J. Appl. Prob. 22, 360369.Google Scholar
[15] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985) Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22, 611618.Google Scholar
[16] Ricciardi, L. M. and Sacerdote, L. (1979) The Ornstein-Uhlenbeck process as a model for neuronal activity. I. Mean and variance of the firing time. Biol. Cybern. 35, 19.Google Scholar
[17] Ricciardi, L. M., Sacerdote, L. and Sato, S. (1983) Diffusion approximation and the first-passage-time problem for a model neuron. II Outline of computation method. Math. Biosci. 64, 2944.Google Scholar
[18] Ricciardi, L. M., Sacerdote, L. and Sato, S. (1984) On an integral equation for first-passage-time probability densities. J. Appl. Prob. 21, 302314.Google Scholar