Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T14:18:36.721Z Has data issue: true hasContentIssue false

On ageing properties of first-passage times of increasing Markov processes

Published online by Cambridge University Press:  01 July 2016

Félix Belzunce*
Affiliation:
Universidad de Murcia
Eva-María Ortega*
Affiliation:
Universidad Miguel Hernández
José M. Ruiz*
Affiliation:
Universidad de Murcia
*
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain.
∗∗ Postal address: Centro de Investigación Operativa, Universidad Miguel Hernández, Campus La Gal·lia, Av. Ferrocarril s/n, 03202 Elche, Alicante, Spain.
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain.

Abstract

The purpose of this paper is to study ageing properties of first-passage times of increasing Markov chains. We extend the literature to some new ageing classes, such as the IFR(2), NBU(2), DRLLt and NBULt classes. We also give sufficient conditions in the finite case, that are more efficient computationally, just in terms of the transition matrix K, in the discrete case, or the generator matrix Q, in the continuous case. For the uniformizable, continuous-time Markov processes, we derive conditions in terms of the discrete uniformized Markov chain for the NBU(2) and the NBULt classes. In the last section, a review of the main results in this direction in the literature is given, and we compare some of the conditions stated in this paper with others given in the literature about some other ageing classes. Some examples where these results are applied are given.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Hameed, M. (1984a). Life distribution properties of a device subject to a pure jump damage process. J. Appl. Prob. 21, 816825.CrossRefGoogle Scholar
Abdel-Hameed, M. (1984b). Life distribution properties of a device subject to a Lévy wear process. Math. Operat. Res. 9, 606614.CrossRefGoogle Scholar
Alzaid, A., Kim, J. S. and Proschan, F. (1991). Laplace ordering and its applications. J. Appl. Prob. 28, 116130.CrossRefGoogle Scholar
Assaf, D., Shaked, M. and Shanthikumar, J. G. (1985). First-passage times with PF_r densities. J. Appl. Prob. 22, 185196.CrossRefGoogle Scholar
Belzunce, F., Ortega, E. and Ruiz, J. M. (1999). The Laplace order and ordering of residual lives. Statist. Prob. Lett. 42, 145156.CrossRefGoogle Scholar
Belzunce, F., Ortega, E. and Ruiz, J. M. (2001). A note on stochastic comparisons of excess lifetimes of renewal processes. J. Appl. Prob. 38, 747753.CrossRefGoogle Scholar
Brown, M. and Chaganty, N. R. (1983). On the first passage time distribution for a class of Markov chains. Ann. Prob. 11, 10001008.CrossRefGoogle Scholar
Derman, C., Ross, S. and Scheckner, Z. (1983). A note on first passage times in birth and death and non-negative diffusion processes. Naval Res. Logistics Quart. 30, 283285.CrossRefGoogle Scholar
Deshpande, J. V., Kochar, S. C. and Singh, H. (1986). Aspects of positive ageing. J. Appl. Prob. 23, 748758.CrossRefGoogle Scholar
Durham, S., Lynch, J. and Padgett, W. J. (1990). TP_2 orderings and the IFR property with applications. Prob. Eng. Inf. Sci. 4, 7388.CrossRefGoogle Scholar
Franco, M., Ruiz, J. M. and Ruiz, M. C. (2001). On closure of the IFR(2) and NBU(2) classes. J. Appl. Prob. 38, 235241.CrossRefGoogle Scholar
Karasu, I. and Özekici, S. (1989). NBUE and NWUE properties of increasing Markov processes. J. Appl. Prob. 27, 827834.CrossRefGoogle Scholar
Karlin, S. (1968). Total Positivity. Stanford University Press.Google Scholar
Karlin, S. and Proschan, F. (1960). Pólya type distributions of convolutions. Ann. Math. Statist. 31, 721736.CrossRefGoogle Scholar
Keilson, J. (1979). Markov Chain Models-Rarity and Exponentially. Springer, New York.CrossRefGoogle Scholar
Keilson, J. and Kester, A. (1977). Monotone matrices and monotone Markov processes. Stoch. Process. Appl. 5, 231241.CrossRefGoogle Scholar
Kijima, M. (1997). Markov Processes for Stochastic Modelling. Chapman and Hall, London.CrossRefGoogle Scholar
Klefsjö, B., (1983). A useful ageing property based on the Laplace transform. J. Appl. Prob. 20, 615626.CrossRefGoogle Scholar
Lam, C. Y. T. (1992). New better than used in expectation processes. J. Appl. Prob. 29, 1161128.CrossRefGoogle Scholar
Li, H. and Shaked, M. (1997). Ageing first-passage times of Markov processes: a matrix approach. J. Appl. Prob. 34, 113.CrossRefGoogle Scholar
Li, X. and Kochar, S. C. (2001). Some new results involving NBU(2) class of life distributions. J. Appl. Prob. 38, 242247.CrossRefGoogle Scholar
Marshall, A. W. and Shaked, M. (1983). New better than used processes. Adv. Appl. Prob. 15, 601615.CrossRefGoogle Scholar
Marshall, A. W. and Shaked, M. (1986). NBU processes with general state space. Math. Operat. Res. 11, 95109.CrossRefGoogle Scholar
Pérez-Ocón, R. and Gámiz-Pérez, M. L. (1996). On first passage times in increasing Markov processes. Statist. Prob. Lett. 26, 199203.CrossRefGoogle Scholar
Pérez-Ocón, R., Gámiz-Pérez, M. L. and Ruiz-Castro, J. E. (1998a). Métodos Estocásticos en Teoría de la Fiabilidad. Proyecto Sur, Granada.Google Scholar
Pérez-Ocón, R., Ruiz-Castro, J. E. and Gámiz-Pérez, M. L. (1998b). A multivariate model to measure the effect of treatments in survival to breast cancer. Biometrical J. 40, 703715.3.0.CO;2-7>CrossRefGoogle Scholar
Shaked, M. and Shanthikumar, J. G. (1987). Characterization of some first passage times using log-concavity and log-convexity as ageing notions. Prob. Eng. Inf. Sci. 1, 279291.CrossRefGoogle Scholar
Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, New York.Google Scholar
Shaked, M. and Wong, T. (1997). Stochastic orders based on ratios of Laplace transforms. J. Appl. Prob. 34, 404419.CrossRefGoogle Scholar
Shanthikumar, J. G. (1984). Processes with new better than used first passage times. Adv. Appl. Prob. 16, 667686.CrossRefGoogle Scholar
Shanthikumar, J. G. (1988). DFR property of first-passage times and its preservation under geometric compounding. Ann. Prob. 16, 397406.CrossRefGoogle Scholar
Yue, D. and Cao, J. (2001). The NBUL class of life distribution and replacement policy comparisons. Naval Res. Logistics 48, 578591.CrossRefGoogle Scholar