Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T11:05:17.424Z Has data issue: false hasContentIssue false

Multi-resolution approximation to the stochastic inverse problem

Published online by Cambridge University Press:  01 July 2016

J. M. Angulo*
Affiliation:
University of Granada
M. D. Ruiz-Medina*
Affiliation:
University of Granada
*
Postal address: Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, E-18071 Granada, Spain.
Postal address: Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, E-18071 Granada, Spain.

Abstract

The linear inverse problem of estimating the input random field in a first-kind stochastic integral equation relating two random fields is considered. For a wide class of integral operators, which includes the positive rational functions of a self-adjoint elliptic differential operator on L2(ℝd), the ill-posed nature of the problem disappears when such operators are defined between appropriate fractional Sobolev spaces. In this paper, we exploit this fact to reconstruct the input random field from the orthogonal expansion (i.e. with uncorrelated coefficients) derived for the output random field in terms of wavelet bases, transformed by a linear operator factorizing the output covariance operator. More specifically, conditions under which the direct orthogonal expansion of the output random field coincides with the integral transformation of the orthogonal expansion derived for the input random field, in terms of an orthonormal wavelet basis, are studied.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, J. M. and Ruiz-Medina, M. D. (1998). A series expansion approach to the inverse problem. J. Appl. Prob. 35, 371382.CrossRefGoogle Scholar
Angulo, J. M., Ruiz-Medina, M. D. and Anh, V. V. (1999a). Wavelet-based orthogonal expansion of fractional generalised random fields. Preprint.Google Scholar
Angulo, J. M., Ruiz-Medina, M. D. and Anh, V. V. (1999b). Estimation and filtering of fractional generalised random fields. Preprint.Google Scholar
Anh, V. V., Angulo, J. M. and Ruiz-Medina, M. D. (1999). Possible long-range dependence in fractional random fields. J. Statist. Planning and Inference 80, 95110.CrossRefGoogle Scholar
Bhatia, M., Karl, W. C. and Willsky, A. S. (1997). Tomographic reconstruction and estimation based on multiscale natural-pixel bases. IEEE Trans. Image Processing 6, 463478.CrossRefGoogle ScholarPubMed
Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909996.CrossRefGoogle Scholar
Dautray, R. and Lions, J. L. (1985). Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2. Functional and Variational Methods. Springer, New York.Google Scholar
Donoho, D. L. (1993). Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comput. Harmon. Anal. 1, 100115.CrossRefGoogle Scholar
Donoho, D. L. (1995). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2, 101126.CrossRefGoogle Scholar
Donoho, D. L. (1996). Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal. 3, 388392.CrossRefGoogle Scholar
Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425455.CrossRefGoogle Scholar
Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90, 12001224.CrossRefGoogle Scholar
Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via wavelet shrinkage. Ann. Statist. 26, 879921.CrossRefGoogle Scholar
Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: asymptopia? J. Roy. Statist. Soc. B 57, 301369.CrossRefGoogle Scholar
Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24, 508539.CrossRefGoogle Scholar
Fieguth, P. W., Karl, W. C. and Willsky, A. S (1998). Efficient multiresolution counterparts to variational-methods for surface reconstruction. Computer Vision and Image Understanding 70, 157176.CrossRefGoogle Scholar
Kolaczyk, E. D. (1996). A wavelet shrinkage approach to tomographic image reconstruction. J. Amer. Statist. Assoc. 91, 10791090.CrossRefGoogle Scholar
Meyer, Y. (1992). Wavelets and Operators. Cambridge University Press.Google Scholar
Miller, E. L. and Willsky, A. S. (1995). A multiscale approach to sensor fusion and the solution of linear inverse problems. Appl. Comput. Harmon. Anal. 2, 127147.CrossRefGoogle Scholar
Miller, E. L. and Willsky, A. S. (1996a). A multiscale, statistically based inversion scheme for linearized inverse scattering problems. IEEE Trans. Geosc. Remote Sens. 34, 346357.CrossRefGoogle Scholar
Miller, E. L. and Willsky, A. S. (1996b). Wavelet-based methods for the nonlinear inverse scattering problem nopagebreak[4] using the extended Born approximation. Radio Science 31, 5165.CrossRefGoogle Scholar
Ramm, A. G. (1990). Random Fields Estimation Theory. Longman, Essex, UK.CrossRefGoogle Scholar
Ruiz-Medina, M. D., Angulo, J. M. and Anh, V. V. (1997). Fractional generalised random fields. Preprint.Google Scholar
Stein, E. M. (1970). Singular Integrals and Differential Properties of Functions. Princeton University Press, Princeton, NJ.Google Scholar
Triebel, H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland, New York.Google Scholar
Wornell, G. W. (1990). A Karhunen–Loève-like expansion for 1/f processes via wavelets. IEEE Trans. Inform. Theory 36, 859861.CrossRefGoogle Scholar
Zhang, J. and Walter, G. (1994). A wavelet-based KL-like expansion for wide-sense stationary random processes. IEEE Trans. Signal Processing 42, 17371744.CrossRefGoogle Scholar