Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T22:44:36.058Z Has data issue: false hasContentIssue false

Limit theorems for extremes with random sample size

Published online by Cambridge University Press:  01 July 2016

Dmitrii S. Silvestrov*
Affiliation:
Umeå University
Jozef L. Teugels*
Affiliation:
Katholieke Universiteit Leuven
*
Postal address: Department of Mathematical Statistics, Umeå University, S-90187 Umeå, Sweden. Email address: [email protected]
∗∗ Postal address: Department of Mathematics, Katholieke Universiteit Leuven, B-3001 Leuven (Heverlee), Belgium. Email address: [email protected]

Abstract

This paper is devoted to the investigation of limit theorems for extremes with random sample size under general dependence-independence conditions for samples and random sample size indexes. Limit theorems of weak convergence type are obtained as well as functional limit theorems for extremal processes with random sample size indexes.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barndorff-Nielsen, O. (1964). On the limit distribution of the maximum of a random number of independent random variables. Acta Math. Acad. Sci. Hungar. 15, 399403.Google Scholar
Beirlant, J. and Teugels, J. L. (1992). Limit distributions for compounded sums of extreme order statistics. J. Appl. Prob. 29, 557574.Google Scholar
Berman, S. M. (1962). Limiting distribution of the maximum term in sequences of dependent random variables. Ann. Math. Statist. 33, 894908.Google Scholar
Berman, S. M. (1992). Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/Cole, Belmont, CA.CrossRefGoogle Scholar
Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.Google Scholar
Eriksson, E. (1995). Limit theorems for extreme statistics with random sample size. , Department of Mathematical Statistics, Umeå Univ.Google Scholar
Galambos, J. (1973). The distribution of the maximum of a random number of random variables with applications. J. Appl. Prob. 10, 122129.CrossRefGoogle Scholar
Galambos, J. (1975). Limit laws for mixtures with applications to asymptotic theory of extremes. Z. Wahrscheïnlich-keitsth. 32, 197207.Google Scholar
Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.Google Scholar
Galambos, J. (1992). Random sample sizes: limit theorems and characterizations. Probability Theory and Applications, ed. Galambos, J. and Kátai, I.. Kluwer, Dordrecht, pp. 107123.Google Scholar
Galambos, J. (1994). About the development of mathematical theory of extremes during the last half-century. Theory Prob. Appl. 39, 272293.Google Scholar
Gikhman, I. I. and Skorokhod, A. V. (1974). Theory of Random Processes. 1. Springer, New York.Google Scholar
Gnedenko, B. V. and Gnedenko, D. B. (1982). About Laplace distribution and logistic distribution as limiting in probability theory. Serdika Bolgarska Mat. 8, 229234.Google Scholar
Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.CrossRefGoogle Scholar
Korolev, V. Yu. (1995). Convergence of random sequences with independent random indices. Theory Prob. Appl. 40, 770772.Google Scholar
Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.CrossRefGoogle Scholar
Leadbetter, M. R. and Rootzén, H. (1988). Extremal theory for stochastic processes. Ann. Prob. 16, 431478.CrossRefGoogle Scholar
Lindvall, T. (1973). Weak convergence of probability measures and random functions in the function space D[0, ∞. J. Appl. Prob. 10, 109121.Google Scholar
Loève, M., (1955). Probability Theory. Van Nostrand, Princeton.Google Scholar
Mogyoródi, J., (1967). On the limit distribution of the largest term in the order statistics of a sample of random size. Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl. 17, 7583.Google Scholar
Rényi, A., (1958). On mixing sequences of sets. Acta Math. Acad. Sci. Hungar. 9, 215228.Google Scholar
Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.Google Scholar
Rootzén, H., (1988). Maxima and exceedances of stationary Markov chains. Adv. Appl. Prob. 20, 371390.Google Scholar
Sen, P. K. (1972). On weak convergence of extremal processes for random sample sizes. Ann. Math. Statist. 43, 13551362.Google Scholar
Serfozo, R. F. (1980). High-level exceedances of regenerative and semi-stationary processes. J. Appl. Prob. 17, 423431.Google Scholar
Serfozo, R. F. (1982). Functional limit theorems for extreme values of arrays of independent random variables. Ann. Prob. 6, 295315.Google Scholar
Silvestrov, D. S. (1972). Remarks on the limit of composite random function. Theory Prob. Appl. 27, 707715.Google Scholar
Silvestrov, D. S. (1974). Limit Theorems for Composite Random Functions. Kiev University Press, Kiev.Google Scholar
Skorokhod, A. V. (1956). Limit theorems for stochastic processes. Theor. Prob. Appl. 1, 261290.Google Scholar
Stone, C. (1963). Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14, 694696.Google Scholar
Thomas, D. I. (1972). On limiting distributions of a random number of dependent random variables. Ann. Math. Statist. 43, 17191726.Google Scholar
Whitt, W. (1980). Some useful functions for functional limit theorems. Math. Operat. Res. 5, 6785.Google Scholar