Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T17:38:44.143Z Has data issue: false hasContentIssue false

Large deviation probabilities for the number of vertices of random polytopes in the ball

Published online by Cambridge University Press:  01 July 2016

Pierre Calka*
Affiliation:
Université René Descartes Paris 5
Tomasz Schreiber*
Affiliation:
Nicolaus Copernicus University, Toruń
*
Postal address: Université René Descartes Paris 5, MAP5, UFR Math-Info, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France. Email address: [email protected]
∗∗ Postal address: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we establish large deviation results on the number of extreme points of a homogeneous Poisson point process in the unit ball of Rd. In particular, we deduce an almost-sure law of large numbers in any dimension. As an auxiliary result we prove strong localization of the extreme points in an annulus near the boundary of the ball.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2006 

References

Bárány, I. (1992). Random polytopes in smooth convex bodies. Mathematika 39, 8192.Google Scholar
Bárány, I. and Larman, D. G. (1988). Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274291.CrossRefGoogle Scholar
Buchta, C. and Müller, J. (1984). Random polytopes in a ball. J. Appl. Prob. 21, 753762.Google Scholar
Calka, P. (2002). The distributions of the smallest disks containing the Poisson–Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Prob. 34, 702717.Google Scholar
Calka, P. and Schreiber, T. (2005). Limit theorems for the typical Poisson–Voronoi cell and the Crofton cell with a large inradius. Ann. Prob. 33, 16251642.CrossRefGoogle Scholar
Efron, B. (1965). The convex hull of a random set of points. Biometrika 52, 331343.Google Scholar
Groeneboom, P. (1988). Limit theorems for convex hulls. Prob. Theory Relat. Fields 79, 327368.Google Scholar
Ledoux, M. (2001). The Concentration of Measure Phenomenon (Math. Surveys Monogr. 89). American Mathematical Society, Providence, RI.Google Scholar
Massé, B. (2000). On the LLN for the number of vertices of a random convex hull. Adv. Appl. Prob. 32, 675681.Google Scholar
Reitzner, M. (2003). Random polytopes and the Efron–Stein Jackknife inequality. Ann. Prob. 31, 21362166.Google Scholar
Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrschein- lichkeitsth. 2, 7584.Google Scholar
Schreiber, T. (2003). A note on large deviation probabilities for volumes of unions of random closed sets. Submitted. Available at http://www.mat.uni.torun.pl/preprints.Google Scholar
Schütt, C. (1994). Random polytopes and affine surface area. Math. Nachr. 170, 227249.Google Scholar
Wieacker, J. A. (1978). Einige Probleme der polyedrischen Approximation. , Universität Freiburg.Google Scholar