Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:08:53.897Z Has data issue: false hasContentIssue false

Insensitivity and reversed Markov processes

Published online by Cambridge University Press:  01 July 2016

W. Henderson*
Affiliation:
University of Adelaide
*
Postal address: Department of Applied Mathematics, University of Adelaide, SA 5001, Australia.

Abstract

This paper is concerned with the relationship between insensitivity in a certain class of Markov processes and properties of that process when time is reversed. Necessary and sufficient conditions for insensitivity are established and linked to already proved results. A number of examples of insensitive systems are given.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1983 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author wrote this paper while on sabbatical leave at the Statistical Laboratory, University of Cambridge, and the Department of Statistics, University of Newcastle upon Tyne.

References

Barbour, A. D. (1976) Networks of queues and the method of stages. Adv. Appl. Prob. 8, 584591.CrossRefGoogle Scholar
Barbour, A. D. (1982) Generalised semi-Markov schemes and open queueing networks. J. Appl. Prob. 19, 469474.CrossRefGoogle Scholar
Barbour, A. D. and Schassberger, R. (1981) Insensitive average residence times in generalised semi-Markov processes. Adv. Appl. Prob. 13, 720735.CrossRefGoogle Scholar
Baskett, F., Chandy, M., Muntz, R. and Palacios, J. (1975) Open, closed and mixed networks of queues with different classes of customers. J. Assoc. Comput. Mach. 22, 248260.CrossRefGoogle Scholar
Brumelle, S. (1978) A generalisation of Erlang's loss system to state dependent arrival and service rates. Math. Operat. Res. 3, 1016.CrossRefGoogle Scholar
Chandy, K. M., Howard, J. H. and Towsley, D. F. (1977) Product form and local balance in queueing networks. J. Assoc. Comput. Mach. 24, 250263.CrossRefGoogle Scholar
Cohen, J. W. (1957) The generalised Engset formulae. Philips Telecommunication Rev. 18, 158170.Google Scholar
Erlander, S. (1967) A note on telephone traffic with losses. J. Appl. Prob. 4, 406408.CrossRefGoogle Scholar
Henderson, W. (1972) Alternative approaches to the analysis of the M/G/1 and G/M/1 queues. J. Operat. Res. Soc. Japan 15, 92101.Google Scholar
Henderson, W. (1983) Non-standard insensitivity. J. Appl. Prob. 20, 288296.CrossRefGoogle Scholar
Kelly, F. P. (1976) Networks of queues. Adv. Appl. Prob. 8, 416432.CrossRefGoogle Scholar
Kelly, F. P. (1979) Reversibility and Stochastic Networks. Wiley, London.Google Scholar
Kelly, F. P. (1982) Networks of quasi-reversible nodes. In Applied Probability-Computer Science, The Interface: Proceedings of the ORSA-TIMS Boca Raton Symposium, ed. Disney, R. Birkhauser Boston, Cambridge, Ma.Google Scholar
König, D. and Jansen, U. (1974) Stochastic processes and properties of invariance for queueing systems with speeds and temporary interruptions. Trans 7th Prague Conf. Information Theory, Czech Academy of Sciences, 335343.Google Scholar
König, D. and Jansen, U. (1976) Eine Invarianzeigenschaft zufalliger Bedienungsprozesse mit positiven Geschwindigkeiten. Math. Nachr. 70, 321364.CrossRefGoogle Scholar
König, D. and Jansen, U. (1980) Insensitivity and steady-state probabilities in product form for queueing networks. Elektron. Informationsverarbeit. Kybernetik 16, 385397.Google Scholar
Kosten, L. (1948) On the validity of the Erlang and Engset loss formulae. Het PTT Bedriff 2, 2245.Google Scholar
Matthes, K. (1962) Zur Theorie der Bedienungprozesse. Trans 3rd Prague Conf Information Theory. Google Scholar
Oakes, D. (1976) Random overlapping intervals: a generalization of Erlang's loss formula. Ann. Prob. 4, 940946.CrossRefGoogle Scholar
Schassberger, R. (1977) Insensitivity of steady-state distributions of generalised semi-Markov processes. Part I. Ann. Prob. 5, 8799.CrossRefGoogle Scholar
Schassberger, R. (1978a) Insensitivity of steady-state distributions of generalised semi-Markov processes. Part II. Ann. Prob. 6, 8593.CrossRefGoogle Scholar
Schassberger, R. (1978b) Insensitivity of steady state distributions of generalised semi-Markov processes with speeds. Adv. Appl. Prob. 10, 836851.CrossRefGoogle Scholar
Schassberger, R. (1978c) The insensitivity of stationary probabilities in networks of queues. Adv. Appl. Prob. 10, 906912.CrossRefGoogle Scholar
Sevastyanov, B. A. (1957) An ergodic theorem for Markov processes and its application to telephone systems with refusals. Theory Prob. Appl. 2, 104112.CrossRefGoogle Scholar
Stoyan, D. (1978) Queueing networks-insensitivity and a heuristic approximation. Elektron. Informationsverarbeit. Kybernetik 14, 135143.Google Scholar
Takács, L. (1969) On Erlang's formula. Ann. Math. Statist. 40, 7178.CrossRefGoogle Scholar
Whittle, P. (1967) Nonlinear migration processes. Bull. Inst. Int. Statist. 42, 642647.Google Scholar
Whittle, P. (1968) Equilibrium distributions for an open migration process. J. Appl. Prob. 5, 567571.CrossRefGoogle Scholar
Wolff, R. W. and Wrightson, C. W. (1976) An extension of Erlang's loss formula. J. Appl. Prob. 13, 628632.CrossRefGoogle Scholar