Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T12:18:16.308Z Has data issue: false hasContentIssue false

Incomplete markets: convergence of options values under the minimal martingale measure

Published online by Cambridge University Press:  01 July 2016

Jean-Luc Prigent*
Affiliation:
University of Cergy-Pontoise
*
Postal address: Thema, University of Cergy-Pontoise, 33 Bd du Port, 95000 Cergy, France. Email address: prigent@u_cergy.fr

Abstract

In the setting of incomplete markets, this paper presents a general result of convergence for derivative assets prices. It is proved that the minimal martingale measure first introduced by Föllmer and Schweizer is a convenient tool for the stability under convergence. This extends previous well-known results when the markets are complete both in discrete time and continuous time. Taking into account the structure of stock prices, a mild assumption is made. It implies the joint convergence of the sequences of stock prices and of the Radon-Nikodym derivative of the minimal measure. The convergence of the derivatives prices follows.

This property is illustrated in the main classes of financial market models.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansel, J. P. and Stricker, C. (1992). Lois de martingale, densités et décomposition de Föllmer–Schweizer. Ann. Inst. Henri Poincaré 28, 375392.Google Scholar
Ansel, J. P. and Stricker, C. (1993). Unicité et existence de la loi minimale. In Sem. Prob. XXVII (Lecture Notes in Math. 1557). Springer, Berlin, pp. 2229.Google Scholar
Avram, F. (1988). Weak convergence of the variations, iterated integrals and Doleans-Dade exponentials of sequences of semimartingales. Ann. Prob. 16, 246250.CrossRefGoogle Scholar
Shiryaev, A. (1996). No-arbitrage, change of measure and conditional Esscher transforms in a semimartingale model of stock processes. CWI Quarterly 9, 291317.Google Scholar
Buhlman, H., Delbaen, F., Embrecht, P. and Shiryaev, A. No-arbitrage, change of measure and conditional Esscher transforms in a semimartingale model of stock processes. CWI Quarterly 9, 291317.Google Scholar
Choulli, T. and Stricker, C. (1996). Unicité et existence de la loi minimale. In Sem. Prob. XXX (Lecture Notes in Math. 1626). Springer, Berlin, pp. 1223.Google Scholar
Cox, J., Ross, S. and Rubinstein, M. (1979), Options pricing: a simplified approach. J. Fin. Econ. 7, 229263.CrossRefGoogle Scholar
Cutland, N., Kopp, E. and Willinger, W. (1993). From discrete to continuous financial models: new convergence results for option pricing. Math. Finance 3, 101123.Google Scholar
Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing: weak convergence of the financial gain process. Math. Annalen 300, 463520.Google Scholar
Dellacherie, C. and Meyer, P. A. (1980). Probabilités et potentiel. Tome III. Chaps. V–VIII. Hermann, Paris.Google Scholar
Duffie, D. and Protter, P. (1989). From discrete to continuous time finance: Weak convergence of the financial gain process. Tech. Rep. 89-02, Purdue University.Google Scholar
Duffie, D. and Protter, P. (1992). From discrete to continuous time finance: Weak convergence of the financial gain process. Math. Finance 2, 116.Google Scholar
Eberlein, E. (1992). On modeling questions in security valuation. Math. Finance 2, 1732.Google Scholar
Föllmer, H. and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analysis, eds. Davis, M. H. A. and Elliott, R. J., Gordon and Breach London, Vol. 5, pp. 389414.Google Scholar
Harrison, J. M. and Kreps, D. (1979). Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381408.Google Scholar
Harrison, J. M. and Pliska, S. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stoch. Proc. Appl. 11, 215260.CrossRefGoogle Scholar
He, H. (1991). Optimal consumption-portfolio policies: a convergence from discrete to continuous time models. J. Econ. Theor. 55, 340363.Google Scholar
Hull, and White, (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42, 281300.Google Scholar
Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.Google Scholar
Jakubowski, A., Mémin, J. and Pagès, G. (1989). Convergence en loi des suites d'intégrales stochastiques sur l'espace D,1 de Skorokhod. Prob. Theor. Rel. Fields 81, 111137.Google Scholar
Kind, P., Liptser, R. S. and Runggaldier, W. J. (1991). Diffusion approximation in past dependent models and applications to option pricing. Ann. Appl. Prob. 1, 379405.Google Scholar
Kreps, D. M. (1981). Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 1535.Google Scholar
Kurtz, T. G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Prob. 19, 10351070.Google Scholar
Mémin, J. and Slominsky, L. (1991). Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques. In Sem. Prob. XXV (Lecture Notes in Math. 1485). Springer, Berlin, pp. 162177.Google Scholar
Nelson, D. B. (1990). Arch models as diffusion approximations. J. Econometrics 45, 739.CrossRefGoogle Scholar
Neveu, J. (1972). Martingales à temps discret. Masson, Paris.Google Scholar
Prigent, J. L. (1994). Pricing of contingent claims from discrete to continuous time models: on the robustness of the Black and Scholes formula. THEMA, working paper No. 9525 University of Cergy-Pontoise, France.Google Scholar
Rachev, S. T. and Ruschendorf, L. (1995). Models for options prices. Theor. Prob. Appl. 39, 120152.CrossRefGoogle Scholar
Runggaldier, W. J. and Schweizer, M. (1995). Convergence of option values under incompleteness. In Seminar on Stochastic Analysis, Random Fields and Applications, eds Bolthausen, E., Dozzi, M. and Russo, F.. Birkhaüser, Basel, pp. 365384.Google Scholar
Schweizer, M. (1991). Option hedging for semimartingales. Stoch. Proc. Appl. 37, 339363.CrossRefGoogle Scholar
Schweizer, M. (1992). Mean-variance hedging for general claims. Ann. Appl. Prob. 2, 171179.Google Scholar
Schweizer, M. (1993). Variance-optimal hedging in discrete time. Math. Oper. Res. 20, 132.Google Scholar
Stricker, C. (1985). Lois de semimartingales et critères de compacité. In Sem. Prob. XIX (Lecture Notes in Math. 1123). Springer, Berlin, pp. 209217.Google Scholar