Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T18:29:42.818Z Has data issue: false hasContentIssue false

Impulse control and expected suprema

Published online by Cambridge University Press:  17 March 2017

Sören Christensen*
Affiliation:
Chalmers University of Technology and University of Gothenburg
Paavo Salminen*
Affiliation:
Åbo Akademi University
*
* Current address: Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany. Email address: [email protected]
** Postal address: Department of Mathematics and Statistics, Åbo Akademi University, FIN-20500 Åbo, Finland.

Abstract

We consider a class of impulse control problems for general underlying strong Markov processes on the real line, which allows for an explicit solution. The optimal impulse times are shown to be of a threshold type and the optimal threshold is characterised as a solution of a (typically nonlinear) equation. The main ingredient we use is a representation result for excessive functions in terms of expected suprema.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alili, L. and Kyprianou, A. E. (2005).Some remarks on first passage of Lévy processes, the American put and pasting principles.Ann. Appl. Prob. 15,20622080.Google Scholar
[2] Alvarez, L. H. R. (2004).A class of solvable impulse control problems.Appl. Math. Optimization 49,265295.CrossRefGoogle Scholar
[3] Alvarez, L. H. R. (2004).Stochastic forest stand value and optimal timber harvesting.SIAM J. Control Optimization 42,19721993.Google Scholar
[4] Alvarez, L. H. R. and Lempa, J. (2008).On the optimal stochastic impulse control of linear diffusions.SIAM J. Control Optimization 47,703732.Google Scholar
[5] Belak, C. and Christensen, S. (2017).Utility maximization in a factor model with constant and proportional costs.Preprint. Available at http://ssrn.com/abstract=2774697.Google Scholar
[6] Bensoussan, A. and Lions, J.-L. (1987).Impulse Control and Quasi Variational Inequalities.John Wiley.Google Scholar
[7] Blumenthal, R. M. and Getoor, R. K. (1968).Markov Processes and Potential Theory(Pure Appl. Math. 29).Academic Press,New York.Google Scholar
[8] Borodin, A. N. and Salminen, P. (2002).Handbook of Brownian Motion–Facts and Formulae,2nd edn.Birkhäuser,Basel.Google Scholar
[9] Cadenillas, A. and Zapatero, F. (2000).Classical and impulse stochastic control of the exchange rate using interest rates and reserves.Math. Finance 10,141156.Google Scholar
[10] Christensen, S. (2014).On the solution of general impulse control problems using superharmonic functions.Stoch. Process. Appl. 124,709729.Google Scholar
[11] Christensen, S.,Salminen, P. and Ta, B. Q. (2013).Optimal stopping of strong Markov processes.Stoch. Process. Appl. 123,11381159.Google Scholar
[12] Chung, K. L. and Walsh, J. B. (2005).Markov Processes, Brownian Motion, and Time Symmetry(Fundamental Principles Math. Sci. 249),2nd edn.Springer,New York.Google Scholar
[13] Cissé, M.,Patie, P. and Tanré, E. (2012).Optimal stopping problems for some Markov processes.Ann. Appl. Prob. 22,12431265.Google Scholar
[14] Corless, R. M. et al. (1996).On the Lambert W function.Adv. Comput. Math. 5,329359.Google Scholar
[15] Deligiannidis, G.,Le, H. and Utev, S. (2009).Optimal stopping for processes with independent increments, and applications.J. Appl. Prob. 46,11301145.Google Scholar
[16] Egami, M. (2008).A direct solution method for stochastic impulse control problems of one-dimensional diffusions.SIAM J. Control Optimization 47,11911218.Google Scholar
[17] Föllmer, H. and Knispel, T. (2006).A representation of excessive functions as expected suprema.Prob. Math. Statist. 26,379394.Google Scholar
[18] Irle, A. and Sass, J. (2006).Optimal portfolio policies under fixed and proportional transaction costs.Adv. Appl. Prob. 38,916942.Google Scholar
[19] Korn, R. (1999).Some applications of impulse control in mathematical finance.Math. Meth. Operat. Res. 50,493518.Google Scholar
[20] Kyprianou, A. E. (2006).Introductory Lectures on Fluctuations of Lévy Processes with Applications.Springer,Berlin.Google Scholar
[21] Kyprianou, A. E. and Surya, B. A. (2005).On the Novikov-Shiryaev optimal stopping problems in continuous time.Electron. Commun. Prob. 10,146154.Google Scholar
[22] Mordecki, E. (2002).The distribution of the maximum of a Lévy processes with positive jumps of phase-type.Theory Stoch. Process. 8,309316.Google Scholar
[23] Mordecki, E. (2002).Optimal stopping and perpetual options for Lévy processes.Finance Stoch. 6,473493.Google Scholar
[24] Mordecki, E. and Salminen, P. (2007).Optimal stopping of Hunt and Lévy processes.Stochastics 79,233251.Google Scholar
[25] Mundaca, G. and Øksendal, B. (1998).Optimal stochastic intervention control with application to the exchange rate.J. Math. Econom. 29,225243.Google Scholar
[26] Novikov, A. A. and Shiryaev, A. N. (2004).On an effective case of the solution of the optimal stopping problem for random walks.Teor. Veroyatn. Primen. 49,373382(in Russian). English translation: Theory Prob. Appl. 49(2005),344354.Google Scholar
[27] Novikov, A. A. and Shiryaev, A. N. (2007).On a solution of the optimal stopping problem for processes with independent increments.Stochastics 79,393406.CrossRefGoogle Scholar
[28] Øksendal, B. and Sulem, A. (2007).Applied Stochastic Control of Jump Diffusions,2nd edn.Springer,Berlin.Google Scholar
[29] Salminen, P. (2011).Optimal stopping, Appell polynomials, and Wiener‒Hopf factorization.Stochastics 83,611622.Google Scholar
[30] Sharpe, M. (1988).General Theory of Markov Processes(Pure Appl. Math. 133).Academic Press,Boston, MA.Google Scholar
[31] Stettner, Ł. (1983).On impulsive control with long run average cost criterion.Studia Math. 76,279298.Google Scholar
[32] Surya, B. A. (2007).An approach for solving perpetual optimal stopping problems driven by Lévy processes.Stochastics 79,337361.Google Scholar
[33] Ta, B. Q. (2014).Excessive functions, Appell polynomials and optimal stopping.Doctoral Thesis, Åbo Akademi University.Google Scholar
[34] Willassen, Y. (1998).The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth.J. Econom. Dynam. Control 22,573596.Google Scholar