Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T06:53:54.139Z Has data issue: false hasContentIssue false

Identically distributed linear forms and the normal distribution

Published online by Cambridge University Press:  01 July 2016

S. G. Ghurye
Affiliation:
University of Alberta
I. Olkin
Affiliation:
Stanford University

Abstract

A general discussion and survey is provided of the characterization of the normal distribution by the identical distribution of linear forms. The first result dates to 1923 when Pólya showed that if X and Y are i.i.d. random variables satisfying certain conditions, and if aX + bY is distributed as (a2 + b2)1/2X, then X has a normal distribution. This result has been generalized in several directions. In addition to a recasting of some of the results, an extension in the multivariate case is provided.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1973 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Eaton, M. L. (1966) Characterization of distributions by the identical distribution of linear forms. J. Appl. Prob. 3, 481494.CrossRefGoogle Scholar
[2] Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley Publishing Co. Cambridge, Mass. Translated by Chung, K. L. with an Appendix by J. L. Doob.Google Scholar
[3] Hardy, G. N., Littlewood, J. E. and Pólya, G. (1952) Inequalities (Second Edition). Cambridge University Press, Cambridge.Google Scholar
[4] Laha, R. G. and Lukacs, E. (1965) On a linear form whose distribution is identical with that of a monomial. Pacific J. Math. 15, 207214.CrossRefGoogle Scholar
[5] Laha, R. G., Lukacs, E. and Rényi, A. (1964) A generalization of a theorem of E. Vincze. Magyar Tud. Akad. Mat. Kutató, Int. Közl. 91A, 237239.Google Scholar
[6] Lévy, P. (1922) Sur la détermination des lois de probabilité par leur fonctions caracteristiques. C. R. Acad. Sci. Paris. 163, 854856.Google Scholar
[7] Linnik, Y. V. (1953) Linear forms and statistical criteria. Ukrain. Mat. Zurnal 5, 207290.Google Scholar
[8] Marcinkiewicz, J. (1939) Sur une propriété de la loi de Gauss. Math. Z. 44, 612618.CrossRefGoogle Scholar
[9] Pólya, G. (1923) Herleitung des Gauszschen Fahler gesetzes aus einer Funktionalgleichung. Math. Z. 18, 96108.CrossRefGoogle Scholar
[10] Vincze, E. (1962) Bemerkung zur charackterisierung des Gauszschen Fehlergesetzes. Magyar Tud. Akad. Mat. Kutató Int. Közl. 7, 357361.Google Scholar