Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T10:24:10.883Z Has data issue: false hasContentIssue false

A geometric interpretation of the relations between the exponential and generalized Erlang distributions

Published online by Cambridge University Press:  01 July 2016

Michel Dehon*
Affiliation:
Université Libre de Bruxelles
Guy Latouche*
Affiliation:
Université Libre de Bruxelles
*
Postal address: Université Libre de Bruxelles, Faculté des Sciences-CP 212, Laboratoire d'Informatique Theorique, Boulevard du Triomphe, B-1050 Bruxelles, Belgium.
Postal address: Université Libre de Bruxelles, Faculté des Sciences-CP 212, Laboratoire d'Informatique Theorique, Boulevard du Triomphe, B-1050 Bruxelles, Belgium.

Abstract

Linear combinations of exponential distribution functions are considered, and the class of distribution functions so obtainable is investigated. Convex combinations correspond to hyperexponential distributions, while non-convex combinations yield, among other, generalized Erlang distributions obtainable as sums of independent exponential random variables with different parameters.

For a given number n of different exponential distributions, the class investigated is an (n – 1)-dimensional convex subset of the n-dimensional real vector space generated by the n distribution functions. The geometric aspect of this subset is revealed, together with the location of hyperexponential and generalized Erlang distributions.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1982 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Latouche, G. (1982) A phase-type semi-Markov point process. SIAM J. Algebraic and Discrete Methods 3, 7790.CrossRefGoogle Scholar
[2] Neuts, M. F. (1975) Probability distributions of phase type. In Liber Amicorum Prof. Emeritus H. Florin, Université de Louvain, Belgium, 173206.Google Scholar
[3] Neuts, M. F. (1979) A versatile Markovian point process. J. Appl. Prob. 16, 764779.CrossRefGoogle Scholar
[4] Neuts, M. F. (1981) Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach. The Johns Hopkins University Press, Baltimore, Md.Google Scholar