Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T07:37:58.650Z Has data issue: false hasContentIssue false

Generalized contact distributions of inhomogeneous Boolean models

Published online by Cambridge University Press:  19 February 2016

Daniel Hug*
Affiliation:
Albert-Ludwigs-Universität, Freiburg
Günter Last*
Affiliation:
Universität Karlsruhe
Wolfgang Weil*
Affiliation:
Universität Karlsruhe
*
Postal address: Mathematisches Institut, Albert-Ludwigs-Universität, Eckerstr. 1, D-79104 Freiburg i. Br., Germany.
∗∗ Postal address: Institut für Mathematische Stochastik, Universität Karlsruhe (TH), Englerstr. 2, D-76128 Karlsruhe, Germany. Email address: [email protected]
∗∗∗ Mathematisches Institut II, Universität Karlsruhe (TH), Englerstr. 2, D-76128 Karlsruhe, Germany.

Abstract

The main purpose of this work is to study and apply generalized contact distributions of (inhomogeneous) Boolean models Z with values in the extended convex ring. Given a convex body L ⊂ ℝd and a gauge body B ⊂ ℝd, such a generalized contact distribution is the conditional distribution of the random vector (dB(L,Z),uB(L,Z),pB(L,Z),lB(L,Z)) given that ZL = ∅, where Z is a Boolean model, dB(L,Z) is the distance of L from Z with respect to B, pB(L,Z) is the boundary point in L realizing this distance (if it exists uniquely), uB(L,Z) is the corresponding boundary point of B (if it exists uniquely) and lB(L,·) may be taken from a large class of locally defined functionals. In particular, we pursue the question of the extent to which the spatial density and the grain distribution underlying an inhomogeneous Boolean model Z are determined by the generalized contact distributions of Z.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fallert, H. (1996). Quermaßdichten für Punktprozesse konvexer Körper und Boolesche Mo-delle. Math. Nachr. 181, 165184.Google Scholar
Hahn, U. and Stoyan, D. (1998). Unbiased stereological estimation of surface area density of gradient surface processes. Adv. Appl. Prob. 30, 904920.Google Scholar
Hansen, M. B., Baddeley, A. J. and Gill, R. D. (1999). First contact distributions for spatial patterns: regularity and estimation. Adv. Appl. Prob. 31, 1533.Google Scholar
Hug, D. (2000). Contact distributions of Boolean models. Rend. Circ. Mat. Palermo (2) Suppl. 65, 137181.Google Scholar
Hug, D. and Last, G. (2000). On support measures in Minkowski spaces and contact distributions in stochastic geometry. Ann. Prob. 28, 796850.Google Scholar
Hug, D., Last, G. and Weil, W. (2001). A survey on contact distributions. Submitted. To appear in Morphology of Condensed Matter (Lecture Notes Phys.), eds Mecke, K. and Stoyan, D., Springer, Berlin.Google Scholar
Kallenberg, O. (1983). Random Measures, 3rd edn. Springer, Berlin and Academic Press, London.Google Scholar
Kiderlen, M. and Weil, W. (1999). Measure-valued valuations and mixed curvature measures of convex bodies. Geom. Dedicata 76, 291329.Google Scholar
Last, G. and Brandt, A. (1995). Marked Point Processes on the Real Line. Springer, New York.Google Scholar
Last, G. and Schassberger, R. (1998). On the distribution of the spherical contact vector of stationary germ-grain models. Adv. Appl. Prob. 30, 3652.Google Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
Mecke, J. (1967). Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 3658.Google Scholar
Mecke, K. (2000). Additivity, convexity and beyond: applications of Minkowski functionals in statistical physics. In Statistical Physics and Spatial Statistics (Lecture Notes Phys.), eds Mecke, K. and Stoyan, D., Springer, Berlin.Google Scholar
Molchanov, I. (1997). Statistics of the Boolean model for Practitioners and Mathematicians. John Wiley, Chichester.Google Scholar
Ohser, J. and Mücklich, F. (2000). Statistical Analysis of Microstructures in Materials Science. John Wiley, Chichester.Google Scholar
Quintanilla, J. and Torquato, S. (1997). Microstructure functions for a model of statistically inhomogeneous random media. Phys. Rev. E 55, 15581565.Google Scholar
Schneider, R. (1993). Convex Bodies: the Brunn–Minkowski Theory Encyclopedia Math. Appl. 44). Cambridge University Press.Google Scholar
Schneider, R. and Weil, W. (2000). Stochastische Geometrie. Teubner, Stuttgart.Google Scholar
Schneider, R. and Wieacker, J. A. (1997). Integral geometry in Minkowski spaces. Adv. Math. 129, 222260.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar
Weil, W. (2000). A uniqueness problem for nonstationary Boolean models. Rend. Circ. Mat. Palerno (2) Suppl. 65, 329344.Google Scholar
Weil, W. (2001). Densities of mixed volumes for Boolean models. Adv. Appl. Prob. 33, 3960.Google Scholar
Weil, W. and Wieacker, J. A. (1988). A representation theorem for random sets. Prob. Math. Statist. 9, 147151.Google Scholar