Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T08:18:03.819Z Has data issue: false hasContentIssue false

A connection between the volume fractions of the Stienen model and the dead leaves model

Published online by Cambridge University Press:  01 July 2016

Marianne Månsson*
Affiliation:
Chalmers University of Technology and Göteborg University
*
Current address: Sagmastaregaten 1 i, SE 41680 Göteborg, Sweden. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The volume fraction of the intact grains of the dead leaves model with spherical grains of equal size is 2d in d dimensions. This is the volume fraction of the original Stienen model. Here we consider some variants of these models: the dead leaves model with grains of a fixed convex shape and possibly random sizes and random orientations, and a generalisation of the Stienen model with convex grains growing at random speeds. The main result of this paper is that if the radius distribution in the dead leaves model equals the speed distribution in the Stienen model, then the volume fractions of the two models are the same in this case also. Furthermore, we show that for grains of a fixed shape and orientation, centrally symmetric sets give the highest volume fraction, while simplices give the lowest. If the grains are randomly rotated, then the volume fraction achieves its highest value only for spheres.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2007 

References

Andersson, J., Häggström, O. and Månsson, M. (2006). The volume fraction of a non-overlapping germ–grain model. Electron. Commun. Prob. 11, 7888.CrossRefGoogle Scholar
Bonnesen, T. and Fenchel, W. (1948). Theorie der Konvexen Körper. Springer, Berlin.Google Scholar
Godbersen, C. (1938). Der Satz vom Vektorbereich in Räumen beliebiger Dimensionen. , University of Göttingen.Google Scholar
Jeulin, D. (1989). Morphological modeling of images by sequential random functions. Signal Process. 16, 403431.CrossRefGoogle Scholar
Jeulin, D. (1997). Dead leaves models: from space tessellation to random functions. In Proc. Internat. Symp. Adv. Theory Appl. Random Sets (Fontainebleu, 1996), ed. Jeulin, D., World Scientific, River Edge, NJ, pp. 137156.CrossRefGoogle Scholar
Makai, E. Jr (1974). Research problem. Periodica Math. Hung. 5, 353354.Google Scholar
Månsson, M. and Rudemo, M. (2002). Random patterns of nonoverlapping convex grains. Adv. Appl. Prob. 34, 718738.CrossRefGoogle Scholar
Matheron, G. (1968). Schéma booléen séquentiel de partition aléatoire. Res. Rep. N83, Centre de Morphologie Mathématique, École des Mines de Paris.Google Scholar
Rogers, C. A. and Shephard, G. C. (1957). The difference body of a convex body. Arch. Math. 8, 220233.CrossRefGoogle Scholar
Schneider, R. (1993). Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press.CrossRefGoogle Scholar
Schneider, R. and Wieacker, J. A. (1993). Integral geometry. In Handbook of Convex Geometry, Vol. B, eds P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, pp. 13491390.CrossRefGoogle Scholar
Stienen, H. (1982). Die Vergroeberung von Karbiden in reinen Eisen-Kohlenstoff Staehlen. , RWTH Aachen.Google Scholar
Stoyan, D. and Schlater, M. (2000). Random sequential adsorption: relationship to dead leaves and characterization of variability. J. Statist. Phys. 100, 969979.CrossRefGoogle Scholar
Weil, W. and Wieacker, J. A. (1993). Stochastic geometry. In Handbook of Convex Geometry, Vol. B, eds P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, pp. 13911438.CrossRefGoogle Scholar