Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:15:47.891Z Has data issue: false hasContentIssue false

A computational approach to first-passage-time problems for Gauss–Markov processes

Published online by Cambridge University Press:  01 July 2016

E. Di Nardo*
Affiliation:
University of Basilicata
A. G. Nobile*
Affiliation:
University of Salerno
E. Pirozzi*
Affiliation:
University of Reggio Calabria
*
Postal address: Dipartimento di Matematica, Università degli Studi della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy.
∗∗ Postal address: Dipartimento di Matematica e Informatica, Università di Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.
∗∗∗ Postal address: Dipartimento di Informatica, Matematica, Elettronica e Trasporti, Università di Reggio Calabria, Via Graziella, 89100 Reggio Calabria, Italy.

Abstract

A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2001 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abrahams, J. (1981). Some comments on conditionally Markov and reciprocal Gaussian processes. IEEE Trans. Commun. 27, 523525.Google Scholar
[2] Abrahams, J. (1986). A survey of recent progress on level-crossing problems for random processes. In Communications and Networks. A Survey of Recent Advances, eds Blake, I. F. and Poor, H. V. Springer, New York, pp. 625.CrossRefGoogle Scholar
[3] Baker, C. T. H. (1978). The Numerical Treatment of Integral Equations. Oxford University Press.Google Scholar
[4] Buonocore, A., Nobile, A. G. and Ricciardi, L. M. (1987). A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19, 784800.CrossRefGoogle Scholar
[5] Daniels, H. E. (1969). The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6, 399408.CrossRefGoogle Scholar
[6] Daniels, H. E. (1996). Approximating the first crossing-time density for a curved boundary. Bernoulli 2, 133143.CrossRefGoogle Scholar
[7] Delves, L. M. and Walsh, J. (1974). Numerical Solution of Integral Equations. Oxford University Press.Google Scholar
[8] Di Crescenzo, A., Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1997). On first-passage-time and transition densities for strongly symmetric diffusion processes. Nagoya Math. J. 145, 143161.CrossRefGoogle Scholar
[9] Doob, J. L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorem. Ann. Math. Statist. 20, 393403.CrossRefGoogle Scholar
[10] Durbin, J. (1971). Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test. J. Appl. Prob. 8, 431453.CrossRefGoogle Scholar
[11] Durbin, J. (1985). The first-passage density of a continuous Gaussian process to a general boundary. J. Appl. Prob. 22, 99122.CrossRefGoogle Scholar
[12] Durbin, J. (1992). The first-passage density of the Brownian motion process to a curved boundary. J. Appl. Prob. 29, 291304.CrossRefGoogle Scholar
[13] Ferebee, B. (1983). An asymptotic expansion for one-sided Brownian exit densities. Z. Wahrscheinlichkeitsth. 63, 115.CrossRefGoogle Scholar
[14] Giorno, V., Nobile, A. G., Ricciardi, L. M. and Sato, S. (1989). On the evaluation of first-passage-time probability densities via nonsingular integral equations. Adv. Appl. Prob. 21, 2036.CrossRefGoogle Scholar
[15] Gutiérrez, R., Ricciardi, L. M., Román, P. and Torres, F. (1997). First-passage-time densities for time-non-homogeneous diffusion processes. J. Appl. Prob. 34, 623631.CrossRefGoogle Scholar
[16] Keilson, J. and Ross, H. F. (1975). Passage times distributions for Gaussian Markov (Orns-te-in–Uhlenbeck) statistical processes. In Selected Tables in Mathematical Statistics, Vol. III. American Mathematical Society, Providence, RI, pp. 233327.Google Scholar
[17] Lánský, P. and Smith, C. E. (1989). The effect of a random initial value in neural first-passage-time models. Math. Biosci. 93, 191215.CrossRefGoogle ScholarPubMed
[18] Mehr, C. B. and McFadden, J. A. (1965). Certain properties of Gaussian processes and their first-passage times. J. R. Statist. Soc. B 27, 505522.Google Scholar
[19] Pickands, J. (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145, 5173.CrossRefGoogle Scholar
[20] Ricciardi, L. M. and Sato, S. (1983). A note on first passage time for Gaussian processes and varying boundaries. IEEE Trans. Inf. Theory 29, 454457.CrossRefGoogle Scholar
[21] Ricciardi, L. M. and Sato, S. (1986). On the evaluation of first-passage-time densities for Gaussian processes. Signal Processing 11, 339357.CrossRefGoogle Scholar
[22] Sacerdote, L. and Tomassetti, F. (1996). On the evaluations and approximations of first-passage-time probabilities. Adv. Appl. Prob. 28, 270284.CrossRefGoogle Scholar