Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T03:06:24.982Z Has data issue: false hasContentIssue false

Coefficients of ergodicity: structure and applications

Published online by Cambridge University Press:  01 July 2016

E. Seneta*
Affiliation:
The Australian National University, Canberra

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Eighth Conference on Stochastic Processes and their Applications
Copyright
Copyright © Applied Probability Trust 1979 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alpin, YU. A. and Gabassov, N. Z. (1976) A remark on the problem of localization of the eigenvalues of real matrices (in Russian). Izv. Vysš. Učebn. Zaved., Mat. 11 (174), 98100.Google Scholar
2. Chatterjee, S. and Seneta, E. (1977) Towards consensus: some convergence theorems on repeated averaging. J. Appl. Prob. 14, 8997.Google Scholar
3. Golubitsky, M., Keeler, E. B. and Rothschild, M. (1975) Convergence of the age structure; applications of the projective metric. Theoret. Popn Biol. 7, 8493.Google Scholar
4. Hajnal, J. (1976) On products of non-negative matrices. Math. Proc. Camb. Phil. Soc. 79, 521530.Google Scholar
5. Kingman, J. F. C. (1975) Geometrical aspects of the theory of non-homogeneous Markov chains. Math. Proc. Camb. Phil. Soc. 77, 171183.CrossRefGoogle Scholar
6. Paz, A. (1971) Introduction to Probabilistic Automata. Academic Press, New York.Google Scholar
7. Sarymsakov, T. A. (1961) Inhomogeneous Markov chains (in Russian). Teor. Veroiat. Primenen. 6, 194201.Google Scholar
8. Seneta, E. (1973) Non-Negative Matrices. Allen and Unwin, London.Google Scholar
9. Seneta, E. (1973) On the historical development of the theory of finite inhomogeneous Markov chains. Proc. Camb. Phil. Soc. 74, 507513.CrossRefGoogle Scholar
10. Seneta, E. (1974) [Review 11167] Math. Rev. 48 (6), 1926.Google Scholar