Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T10:35:59.029Z Has data issue: false hasContentIssue false

Averaging for a Fully Coupled Piecewise-Deterministic Markov Process in Infinite Dimensions

Published online by Cambridge University Press:  04 January 2016

Alexandre Genadot*
Affiliation:
Université Pierre et Marie Curie
Michèle Thieullen*
Affiliation:
Université Pierre et Marie Curie
*
Postal address: Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Paris 6, UMR 7599, Case courrier 188, 4 Place Jussieu, 75252 Paris Cedex 05, France.
Postal address: Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Paris 6, UMR 7599, Case courrier 188, 4 Place Jussieu, 75252 Paris Cedex 05, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider the generalized Hodgkin-Huxley model introduced in Austin (2008). This model describes the propagation of an action potential along the axon of a neuron at the scale of ion channels. Mathematically, this model is a fully coupled piecewise-deterministic Markov process (PDMP) in infinite dimensions. We introduce two time scales in this model in considering that some ion channels open and close at faster jump rates than others. We perform a slow-fast analysis of this model and prove that, asymptotically, this ‘two-time-scale’ model reduces to the so-called averaged model, which is still a PDMP in infinite dimensions, for which we provide effective evolution equations and jump rates.

Type
General Applied Probability
Copyright
© Applied Probability Trust 

Footnotes

This work was supported by the Agence Nationale de la Recherche through the project MANDy, Mathematical Analysis of Neuronal Dynamics, ANR-09-BLAN-0008-01.

References

Austin, T. D. (2008). The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Prob. 18, 12791325.Google Scholar
Buckwar, R. and Riedler, M. G. (2011). An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63, 10511093.Google Scholar
Chow, C. C. and White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophys. J. 71, 30133021.Google Scholar
Costa, O. L. V. and Dufour, F. (2008). Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optimization 47, 10531077.Google Scholar
Costa, O. L. V. and Dufour, F. (2011). Singular perturbation for the discounted continuous control of piecewise deterministic Markov processes. Appl. Math. Optimization 63, 357384.Google Scholar
Crudu, A., Debussche, A., Muller, A. and Radulescu, O. (2012). Convergence of stochastic gene networks to hybrid piecewise deterministic processes. To appear in Ann. Appl. Prob. CrossRefGoogle Scholar
Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. R. Statist. Soc. B 46, 353388.Google Scholar
Davis, M. H. A. (1993). Markov Models and Optimization (Monogr. Statist. Appl. Prob. 49). Chapman and Hall, London.Google Scholar
Defelice, L. J. and Isaac, A. (1993). Chaotic states in a random world: relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Statist. Phys. 70, 339354.Google Scholar
Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley, New York.Google Scholar
Faggionato, A., Gabrielli, D. and Crivellari, M. R. (2010). Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors. Markov Process. Relat. Fields 16, 497548.Google Scholar
Faisal, A. A., White, J. A. and Laughlin, S. B. (2005). Ion-channel noise places limits on the miniaturization of the brain's wiring. Current Biol. 15, 11431149.Google Scholar
Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43, 867896.Google Scholar
Flaim, S. N., Gilles, W. R. and McCulloch, A. D. (2006). Contributions of sustained I Na and I Kv43 to transmural heterogeneity of early repolarization and arrhythmogenesis in canine left ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 291, 26172629.Google Scholar
Fonbona, J., Guérin, H. and Malrieu, F. (2012). Quantitative estimates for the long time behavior of a PDMP describing the movement of bacteria. Submitted.Google Scholar
Fox, R. F. (1997). Stochastic versions of the Hodgkin-Huxley equations. Biophys. J. 72, 20682074.Google Scholar
Greenstein, J. L., Hinch, R. and Winslow, R. L. (2006). Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys. J. 90, 7791.Google Scholar
Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations (Lecture Notes Math. 840). Springer, Berlin.Google Scholar
Hille, B. (1992). Ionic Channels of Excitable Membranes, 2nd edn. Sinauer, Sunderland, MA.Google Scholar
Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500544.Google Scholar
Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.Google Scholar
Métivier, M. (1984). Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev. Ann. Inst. H. Poincaré Prob. Statist. 20, 329348.Google Scholar
Pakdaman, K., Thieullen, M. and Wainrib, G. (2012). Asymptotic expansion and central limit theorem for multiscale piecewise deterministic Markov processes. To appear in Stoch. Process Appl.Google Scholar
Pavliotis, G. A. and Stuart, A. M. (2008). Multiscale Methods (Texts Appl. Math. 53). Springer, New York.Google Scholar
Riedler, M. G. (2011). Almost sure convergence of numerical approximations for piecewise deterministic Markov processes. Preprint. Available at http://arxiv.org/abs/1112.1190v1.Google Scholar
Riedler, M. G., Thieullen, M. and Wainrib, G. (2012). Limit theorems for infinite-dimensional piecewise deterministic processes and applications to stochastic neuron models. Submitted.Google Scholar
Yin, G. G. and Zhang, Q. (1997). Continuous-Time Markov Chains and Applications. Springer, Berlin.Google Scholar