Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Ljung, L.
Wahlberg, B.
and
Hjalmarsson, H.
1991.
Model quality: the roles of prior knowledge and data information.
p.
273.
Ljung, L.
Glad, T.
and
Andersson, T.
1993.
Identifiability implies robust identifiability.
p.
567.
Ninness, B.M.
1993.
Stochastic and deterministic estimation in H/sub ∞/.
p.
62.
Ninness, Brett M.
and
Goodwin, Graham C.
1994.
The Modeling of Uncertainty in Control Systems.
Vol. 192,
Issue. ,
p.
235.
Homer, J.
Mareels, I.
Wahlberg, B.
Gustafsson, F.
and
Bitmead, R.
1994.
LMS estimation of sparsely parametrized channels via structural detection.
Vol. 1,
Issue. ,
p.
257.
Akçay, Hüseyin
and
Hjalmarson, Håkan
1994.
The least-squares identification of FIR systems subject to worst-case noise.
Systems & Control Letters,
Vol. 23,
Issue. 5,
p.
329.
Hakvoort, Richard G.
and
Van Den Hof, Paul M.J.
1995.
Consistent parameter bounding identification for linearly parametrized model sets.
Automatica,
Vol. 31,
Issue. 7,
p.
957.
Ljung, L.
Sjöberg, J.
and
Hjalmarsson, H.
1996.
Identification, Adaptation, Learning.
p.
366.
Goldenshluger, A.
1998.
Nonparametric estimation of transfer functions: rates of convergence and adaptation.
IEEE Transactions on Information Theory,
Vol. 44,
Issue. 2,
p.
644.
Homer, J.
Mareels, I.
Bitmead, R.R.
Wahlberg, B.
and
Gustafsson, A.
1998.
LMS estimation via structural detection.
IEEE Transactions on Signal Processing,
Vol. 46,
Issue. 10,
p.
2651.
Ninness, Brett
Hjalmarsson, Hakan
and
Gustafsson, Fredrik
1999.
Generalized Fourier and Toeplitz Results for Rational Orthonormal Bases.
SIAM Journal on Control and Optimization,
Vol. 37,
Issue. 2,
p.
429.
Ninness, B.
Hjalmarsson, H.
and
Gustafsson, F.
1999.
The fundamental role of general orthonormal bases in system identification.
IEEE Transactions on Automatic Control,
Vol. 44,
Issue. 7,
p.
1384.
Gibson, J.S.
Lee, G.H.
and
Wu, C.-F.
2000.
Least-squares estimation of input/output models for distributed linear systems in the presence of noise.
Automatica,
Vol. 36,
Issue. 10,
p.
1427.
Mari, Jorge
Dahlén, Anders
and
Lindquist, Anders
2000.
A covariance extension approach to identification of time series.
Automatica,
Vol. 36,
Issue. 3,
p.
379.
Petrovic, I.
Baotic, M.
and
Peric, N.
2000.
Model structure selection for nonlinear system identification using feedforward neural networks.
p.
53.
Xie, L.
Fridman, E.
and
Shaked, U.
2001.
Robust H/sub ∞/ control of distributed delay systems with application to combustion control.
IEEE Transactions on Automatic Control,
Vol. 46,
Issue. 12,
p.
1930.
Quaglini, Virginio
Previdi, Fabio
Contro, Roberto
and
Bittanti, Sergio
2002.
A discrete-time nonlinear Wiener model for the relaxation of soft biological tissues.
Medical Engineering & Physics,
Vol. 24,
Issue. 1,
p.
9.
Campi, M.C.
and
Weyer, E.
2002.
Finite sample properties of system identification methods.
IEEE Transactions on Automatic Control,
Vol. 47,
Issue. 8,
p.
1329.
Ninness, B.
and
Hjalmarsson, H.
2003.
Variance error quantifications that are exact for finite model order.
Vol. 6,
Issue. ,
p.
6003.
Ninness, B.
and
Hjalmarsson, H.
2004.
The Effect of Regularization on Variance Error.
IEEE Transactions on Automatic Control,
Vol. 49,
Issue. 7,
p.
1142.