Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T00:38:32.160Z Has data issue: false hasContentIssue false

Asymptotic behaviour of the solutions of the Fisher equation

Published online by Cambridge University Press:  01 July 2016

F. Rothe*
Affiliation:
(University of Tübingen)

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Conference on Models of Biological Growth and Spread, Mathematical Theories and Applications, Heidelberg, Federal Republic of Germany, 16–21 July 1979
Copyright
Copyright © Applied Probability Trust 1980 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aronson, D. G. and Weinberger, H. F. (1975) Nonlinear diffusion in population genetics, combustion and nerve propagation. In Lecture Notes in Mathematics 446, Springer-Verlag, Berlin, 549.Google Scholar
2. Fife, P. C. and McLeod, J. B. (1977) The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335361.Google Scholar
3. Fisher, R. A. (1937) The advance of advantageous genes. Ann. Eugenics 7, 355369.Google Scholar
4. Kanel, Ja. I. (1964) On the stability of solutions of the equation of combustion theory for finite initial functions. Mat. Sb. 65, 398413.Google Scholar
5. Kolmogoroff, A., Petrovskij, I. and Piskunov, N. (1937) Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Moscou, Ser. Intern., Sect. A1, 125.Google Scholar
6. McKean, H. P. (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovsky–Piskunov. Comm. Pure Appl. Math. 28, 323331.Google Scholar