Published online by Cambridge University Press: 20 March 2018
We construct a simple example, surely known to Harry Kesten, of an R-transient Markov chain on a countable state space S ∪ {δ}, where δ is absorbing. The transition matrix K on S is irreducible and strictly substochastic. We determine the Yaglom limit, that is, the limiting conditional behavior given nonabsorption. Each starting state x ∈ S results in a different Yaglom limit. Each Yaglom limit is an R-1-invariant quasi-stationary distribution, where R is the convergence parameter of K. Yaglom limits that depend on the starting state are related to a nontrivial R-1-Martin boundary.