Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T07:45:03.931Z Has data issue: false hasContentIssue false

Sur la transience de certaines chaines de Markov sur les permutations

Published online by Cambridge University Press:  01 July 2016

Jacques-Edouard Dies*
Affiliation:
Université Paul Sabatier
*
Adresse postale: Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse Cedex, France.

Abstract

Books being placed on a shelf, a book bi is selected with probability pi, it is removed and replaced at the left-hand end of the shelf prior to next removal. The different arrangements of books on the shelf are considered as states in a Markov chain, known as a Tsetlin library. In this paper, we establish the necessary and sufficient condition of transience for some extensions of this chain.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1982 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Arnaud, J. P. (1977) Sur quelques propriétés des librairies. Thèse de Spécialité, Université Paul Sabatier, Toulouse.Google Scholar
Aven, O. I., Boguslavsky, L. B. and Kogan, Y. A. (1976) Some results on distribution-free analysis on paging algorithms. IEEE Trans. Computing C-25, 737744.CrossRefGoogle Scholar
Dies, J. E. (1981) Récurrence positive des librairies mixtes. Z. Wahrscheinlichkeitsth. 58, 509528.CrossRefGoogle Scholar
Dies, J. E. (1982a) Henricks libraries and Tsetlin piles. Adv. Appl. Prob. 14, 3755.CrossRefGoogle Scholar
Dies, J. E. (1982b) Quelques propriétés des librairies d'Aven, Boguslavsky et Kogan. Annales Inst. H. Poincaré B 18.Google Scholar
Letac, G. (1974) Transience and recurrence of an interesting Markov chain. J. Appl. Prob. 11, 818824.Google Scholar
Letac, G. (1978) Chaînes de Markov sur les permutations. S.M.S. Presses de l'Université de Montréal.Google Scholar
Nelson, P. R. (1975) Library type Markov Chains. Doctoral dissertation, Case Western Reserve University, Cleveland.Google Scholar
Rackusin, J. L. (1977) Pb. E2652. Amer. Math. Monthly 84, 295.Google Scholar