Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T11:54:05.665Z Has data issue: false hasContentIssue false

The set covariance of a dead leaves model

Published online by Cambridge University Press:  19 February 2016

Wilfried Gille*
Affiliation:
Martin-Luther-Universität Halle-Wittenberg
*
Postal address: Department of Physics, Martin-Luther-Universität Halle-Wittenberg, SAS-Laboratory, Hoher Weg 8, D-06120 Halle, Germany. Email address: [email protected]

Abstract

The set covariance of a dead leaves model, constructed from hard spheres of constant diameter, is calculated analytically. The calculation is based on the covariance of a single sphere and on the pair correlation function of the centres of the spheres. There exist applications in the field of random sequential adsorption and in the interpretation of small-angle scattering experiments.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Camko, C. G., Kulbac, A. A. and Maritschew, O. I. (1987). Integrali i proiswodnyje drobnowo porjadka i nekotoryje ich priloschenija. Integrale und Ableitungen Gebrochen-Rationaler Funktionen und einige Anwendungen. Nauka i Technika, Minsk (in Russian).Google Scholar
Feigin, L. A. and Svergun, D. I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum Press, New York.CrossRefGoogle Scholar
Gille, W. (1983). Stereologische Characterisierung von Mikroteilchensystemen mit der Röntgenkleinwinkelstreuung. , Martin-Luther-Universität Halle–Wittenberg.Google Scholar
Gille, W. (1995). Diameter distribution of spherical primary grains in the Boolean model from small-angle scattering. Part. Part. Syst. Charact. 12, 123131.Google Scholar
Gille, W. (2000). Chord length distributions and small-angle scattering. Eur. J. Phys. B 17, 371383.Google Scholar
Jeulin, D. (1997). Dead leaves models: from space tesselation to random functions. In Proc. Symp. Adv. Theory Appl. Random Sets (Fontainebleau, 9–11 October 1996), ed. Jeulin, D., World Scientific, River Edge, pp. 137156.Google Scholar
Jeulin, D. (1998). Probabilistic models of structures. In Probamat 21st Century, ed. Frantziskonis, G. N. (NATO ASI Ser. 46), Kluwer, Dordrecht, pp. 233257.Google Scholar
Matérn, B., (1960). Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut 49, No. 5.Google Scholar
Matheron, G. (1968). Schéma booléen séquentiel de partition aléatoire. Res. Rep. N83, Centre de Morphologie Mathématique, École des Mines de Paris.Google Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
Porod, G. (1951/52). Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid Z. 124, 83–114; 125, 51122.Google Scholar
Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.Google Scholar
Stoyan, D. and Schlather, M. (2000). Random sequential adsorption: relationship to dead leaves and characterization of variability. J. Statist. Phys. 100, 969979.CrossRefGoogle Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. Akademie Verlag, Berlin.Google Scholar