No CrossRef data available.
Article contents
On the MLE for a spatial point pattern
Published online by Cambridge University Press: 01 July 2016
Extract
Parameter estimation for a two-dimensional point pattern is difficult because most of the available stochastic models have intractable likelihoods ([2]). An exception is the class of Gibbs or Markov point processes ([1], [5]), where the likelihood typically forms an exponential family and is given explicitly up to a normalising constant. However, the latter is not known analytically, so parameter estimates must be based on approximations ([3], [6], [7]). In this paper we present comparisons amongst the different techniques available in the literature to obtain an approximation of the maximum likelihood estimate (MLE). Two stochastic methods are specifically illustrated: a Newton-Raphson algorithm ([7]) and the Robbins-Monro procedure ([8]). We use a very simple point process model, the Strauss process ([4]), to test and compare those approximations.
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 1996