Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:36:03.930Z Has data issue: false hasContentIssue false

On the correlation structure of unilateral AR processes on the plane

Published online by Cambridge University Press:  01 July 2016

F. Champagnat*
Affiliation:
Office National d'études et de Recherches Aérospatiales
J. Idier*
Affiliation:
Laboratoire des Signaux et Systèmes
*
Postal address: ONERA, DTIM/TI, 29 av. de la division Leclerc, BP 72-92322 Châtillon Cedex, France.
∗∗ Postal address: Laboratoire des Signaux et Systèmes, SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. Email address: [email protected]

Abstract

In, Tory and Pickard show that a simple subclass of unilateral AR processes identifies with Gaussian Pickard random fields on Z2. First, we extend this result to the whole class of unilateral AR processes, by showing that they all satisfy a Pickard-type property, under which correlation matching and maximum entropy properties are assessed. Then, it is established that the Pickard property provides the ‘missing’ equations that complement the two-dimensional Yule-Walker equations, in the sense that the conjunction defines a one-to-one mapping between the set of AR parameters and a set of correlations. It also implies Markov chain conditions that allow exact evaluation of the likelihood and an exact sampling scheme on finite lattices.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Azimi-Sadjadi, M. R., Xiao, R. and Yu, X. (1999). Neural network decision directed edge-adaptative Kalman filter for image estimation. IEEE Trans. Image Processing 8, 589592.CrossRefGoogle ScholarPubMed
[2] Besag, J. E. (1972). On the correlation structure of some two-dimensional stationary processes. Biometrika 59, 4348.CrossRefGoogle Scholar
[3] Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). {J. R. Statist. Soc. B} 36, 192236.Google Scholar
[4] Besag, J. E. and Kooperberg, C. (1995). On conditional and intrinsic autoregressions. Biometrika 82, 733746.Google Scholar
[5] Champagnat, F., Idier, J. and Goussard, Y. (1998). Stationary Markov random fields on a rectangular finite lattice. IEEE Trans. Inf. Theory 44, 29012916.CrossRefGoogle Scholar
[6] Chellappa, R. and Chatterjee, S. (1985). Classification of textures using Gaussian Markov random fields. IEEE Trans. Acoust. Speech, Signal Processing 33, 959963.CrossRefGoogle Scholar
[7] Demeure, C. J. and Mullis, C. T. (1990). A Newton–Raphson method for moving average spectral factorization using the Euclid algorithm. IEEE Trans. Acoust. Speech, Signal Processing 38, 16971709.CrossRefGoogle Scholar
[8] Dempster, A. P. (1972). Covariance selection. Biometrics 28, 157175.CrossRefGoogle Scholar
[9] Derin, H. and Kelly, P. A. (1989). Discrete-index Markov-type random processes. Proc. IEEE 77, 14851510.CrossRefGoogle Scholar
[10] Descombes, X., Sigelle, M. and Preteux, F. (1999). Estimating Gaussian Markov random field parameters in a nonstationary framework: application to remote sensing imaging. IEEE Trans. Image Processing 8, 490503.CrossRefGoogle Scholar
[11] Dobrushin, P. L. (1968). The description of a random field by the means of conditional probabilities and conditions of its regularity. Theory Prob. Appl. 13, 197224.CrossRefGoogle Scholar
[12] Dudgeon, D. E. and Mersereau, R. M. (1984). Multidimensional Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[13] Ekstrom, M. P. and Woods, J. W. (1976). Two-dimensional spectral factorization with applications in recursive digital filtering. IEEE Trans. Acoust. Speech, Signal Processing 24, 115127.CrossRefGoogle Scholar
[14] French, P. A., Zeidler, J. R. and Ku, W. H. (1997). Enhanced detectability of small objects in correlated clutter using an improved 2-d adaptative lattice algorithm. IEEE Trans. Image Processing 6, 383397.CrossRefGoogle Scholar
[15] Grandell, J., Hamrund, M. and Toll, P. (1980). A remark on the correspondence between the maximum entropy method and the autoregressive model. {IEEE Trans. Inf. Theory} 26, 750751.Google Scholar
[16] Gu, G. and Lee, B. E. (1990). A numerical algorithm for stability testing of 2-D recursive digital filters. IEEE Trans. Circuits Systems 37, 135138.CrossRefGoogle Scholar
[17] Guyon, X. (1992). Champs Aléatoires sur un Réseau: Modélisations, Statistique et Applications. Techniques Stochastiques. Masson, Paris.Google Scholar
[18] Hu, X. and Jury, E. I. (1994). On two-dimensional filter stability test. IEEE Trans. Circuits Systems—II: Analog Digital Signal Processing 41, 457462.Google Scholar
[19] Jury, E. I. (1988). Modified stability table for 2-D digital filters. IEEE Trans. Circuits Systems 35, 116119.CrossRefGoogle Scholar
[20] Kailath, T., Vieira, A. and Morf, M. (1978). Inverses of T{œ}plitz operators, innovations, and orthogonal polynomials. SIAM Rev. 20, 106119.CrossRefGoogle Scholar
[21] Kanal, L. N. (1980). Markov mesh models. In Image Modeling, ed. Rosenfeld, A. Academic Press, New York, pp. 239243.Google Scholar
[22] Marple, S. L. (1987). Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[23] Nappi, M. and Vitulano, D. (1999). Linear prediction image coding using iterated function systems. Image Vision Comput. 17, 771776.CrossRefGoogle Scholar
[24] Pianykh, O. S. and Tyler, J. M. (1999). Nearly-lossless autoregressive image compression. Patt. Recog. Lett. 20, 221228.CrossRefGoogle Scholar
[25] Pickard, D. K. (1980). Unilateral Markov fields. Adv. Appl. Prob. 12, 655671.CrossRefGoogle Scholar
[26] Sharma, G. and Chellappa, R. (1986). Two-dimensional spectrum estimation using noncausal autoregressive models. IEEE Trans. Inf. Theory 32, 268275.CrossRefGoogle Scholar
[27] Tory, E. M. and Pickard, D. K. (1992). Unilateral Gaussian fields. Adv. Appl. Prob. 24, 95112.CrossRefGoogle Scholar
[28] Wilson, G. (1969). Factorization of the covariance generating function of a pure moving average process. SIAM J. Num. Anal. 6, 17.CrossRefGoogle Scholar
[29] Woods, J. W. and Radewan, C. H. (1977). Kalman filtering in two dimensions. IEEE Trans. Inf. Theory 23, 473482.CrossRefGoogle Scholar