Published online by Cambridge University Press: 01 July 2016
In this paper, we present results for the steady-state system length distributions of the discrete-time GI/G/1 queue. We examine the system at customer arrival epochs (customer departure epochs) and use the residual service time (residual interarrival time) as the supplementary variable. The embedded Markov chain is of GI/M/1 type if the embedding points are arrival epochs and is of M/G/1 type if the embedding points are departure epochs. Using the matrix analytic method, we identify the necessary and sufficient condition for both Markov chains to be positive recurrent. For the GI/M/1 type chain, we derive a matrix-geometric solution for its steady-state distribution and for the M/G/1 type chain, we develop a simple linear transformation that relates it to the GI/M/1 type chain and leads to a simple analytic solution for its steady-state distribution. We also show that the steady-state system length distribution at an arbitrary point in time can be obtained by a simple linear transformation of the matrix-geometric solution for the GI/M/1 type chain. A number of applications of the model to communication systems and numerical examples are also discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.