Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:52:56.951Z Has data issue: false hasContentIssue false

The neutral two-locus model as a measure-valued diffusion

Published online by Cambridge University Press:  01 July 2016

S. N. Ethier*
Affiliation:
University of Utah
R. C. Griffiths*
Affiliation:
Monash University
*
Postal address: Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA. Supported in part by NSF grant DMS-8704369.
∗∗Postal address: Department of Mathematics, Monash University, Clayton, VIC 3168, Australia.

Abstract

The neutral two-locus model in population genetics is reformulated as a measure-valued diffusion process and is shown under certain conditions to have a unique stationary distribution and be weakly ergodic. The limits of the process and its stationary distribution as the recombination parameter tends to infinity are found. Genealogies are incorporated into the model, and it is shown that a random sample of size n from the population at stationarity has a common ancestor.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ethier, S. N. (1979) A limit theorem for two-locus diffusion models in population genetics. J. Appl. Prob. 16, 402408.Google Scholar
Ethier, S. N. and Griffiths, R. C. (1988) The two-locus infinitely-many-neutral-alleles diffusion model. Unpublished manuscript.Google Scholar
Ethier, S. N. and Griffiths, R. C. (1990) On the two-locus sampling distribution. J. Math. Biol. To appear.Google Scholar
Ethier, S. N. and Kurtz, T. G. (1981) The infinitely-many-neutral-alleles diffusion model. Adv. Appl. Prob. 13, 429452.CrossRefGoogle Scholar
Ethier, S. N. and Kurtz, T. G. (1986) Markov Processes: Characterization and Convergence . Wiley, New York.Google Scholar
Ethier, S. N. and Kurtz, T. G. (1987) The infinitely-many-alleles model with selection as a measure-valued diffusion. Lecture Notes in Biomathematics 70, Springer-Verlag, Berlin, 7286.Google Scholar
Ethier, S. N. and Nagylaki, T. (1989) Diffusion approximations of the two-locus Wright-Fisher model. J Math. Biol. 27, 1728.CrossRefGoogle ScholarPubMed
Fleming, W. H. and Viot, M. (1979) Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28, 817843.Google Scholar
Hudson, R. R. and Kaplan, N. L. (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147164.Google Scholar
Kurtz, T. G. (1981) Approximation of Population Processes. CBMS-NSF Regional Conference Series in Applied Mathematics 36. SIAM, Philadelphia.Google Scholar
Littler, R. A. (1972) Multidimensional Stochastic Models in Genetics. Ph.D. thesis, Monash University.Google Scholar