Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:26:07.654Z Has data issue: false hasContentIssue false

Local limits of spatial inhomogeneous random graphs

Published online by Cambridge University Press:  14 April 2023

Remco van der Hofstad*
Affiliation:
Eindhoven University of Technology
Pim van der Hoorn*
Affiliation:
Eindhoven University of Technology
Neeladri Maitra*
Affiliation:
Eindhoven University of Technology
*
*Postal address: Department of Mathematics and Computer Science, MetaForum, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands.
*Postal address: Department of Mathematics and Computer Science, MetaForum, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands.
*Postal address: Department of Mathematics and Computer Science, MetaForum, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands.

Abstract

Consider a set of n vertices, where each vertex has a location in $\mathbb{R}^d$ that is sampled uniformly from the unit cube in $\mathbb{R}^d$, and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights.

Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $\mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models.

We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athanasiou, R. and Yoshioka, G. A. (1973). The spatial character of friendship formation. Environm. Behavior 5, 4365.Google Scholar
Aldous, D. and Steele, J. M. (2004). The objective method: probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures, Springer, Berlin, pp. 172.Google Scholar
Benjamini, I., Kesten, H., Peres, Y. and Schramm, O. (2011). Geometry of the uniform spanning forest: transitions in dimensions $4,8,12,\dots$ . In Selected Works of Oded Schramm, Springer, New York, pp. 751–777.10.1007/978-1-4419-9675-6_25CrossRefGoogle Scholar
Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Prob. 6, paper no. 23, 13 pp.Google Scholar
Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122.10.1002/rsa.20168CrossRefGoogle Scholar
Bringmann, K., Keusch, R. and Lengler, J. (2016). Average distance in a general class of scale-free networks with underlying geometry. Preprint. Available at https://arxiv.org/abs/1602.05712.Google Scholar
Bringmann, K., Keusch, R. and Lengler, J. (2017). Sampling geometric inhomogeneous random graphs in linear time. In 25th Annual European Symposium on Algorithms (ESA 2017) (Leibniz International Proceedings in Informatics (LIPIcs) 87), Schloss Dagstuhl, Leibniz-Zentrum für Informatik, Wadern, article no. 20, 15 pp.Google Scholar
Bringmann, K., Keusch, R. and Lengler, J. (2019). Geometric inhomogeneous random graphs. Theoret. Comput. Sci. 760, 3554.10.1016/j.tcs.2018.08.014CrossRefGoogle Scholar
Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected degrees. Proc. Nat. Acad. Sci. USA 99, 1587915882.10.1073/pnas.252631999CrossRefGoogle Scholar
Chung, F. and Lu, L. (2002). Connected components in random graphs with given expected degree sequences. Ann. Combinatorics 6, 125145.10.1007/PL00012580CrossRefGoogle Scholar
Dalmau, J. and Salvi, M. (2021). Scale-free percolation in continuous space: quenched degree and clustering coefficient. J. Appl. Prob. 58, 106127.10.1017/jpr.2020.76CrossRefGoogle Scholar
Deijfen, M., van der Hofstad, R. and Hooghiemstra, G. (2013). Scale-free percolation. Ann. Inst. H. Poincaré Prob. Statist. 49, 817838.10.1214/12-AIHP480CrossRefGoogle Scholar
Deprez, P. and Wüthrich, M. V. (2019). Scale-free percolation in continuum space. Commun. Math. Statist. 7, 269308.10.1007/s40304-018-0142-0CrossRefGoogle Scholar
Van den Esker, H., van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005). Distances in random graphs with infinite mean degrees. Extremes 8, 111141.10.1007/s10687-006-7963-zCrossRefGoogle Scholar
Fountoulakis, N., van der Hoorn, P., Müller, T. and Schepers, M. (2021). Clustering in a hyperbolic model of complex networks. Electron. J. Prob. 26, 132 pp.10.1214/21-EJP583CrossRefGoogle Scholar
Gilbert, E. N. (1961). Random plane networks. J. SIAM 9, 533543.Google Scholar
Gracar, P., Grauer, A. and Mörters, P. (2022). Chemical distance in geometric random graphs with long edges and scale-free degree distribution. Commun. Math. Phys. 395, 859906.10.1007/s00220-022-04445-3CrossRefGoogle Scholar
Gracar, P., Heydenreich, M., Mönch, C. and Mörters, P. (2022). Recurrence versus transience for weight-dependent random connection models. Electron. J. Prob. 27, 31 pp.10.1214/22-EJP748CrossRefGoogle Scholar
Heydenreich, M., Hulshof, T. and Jorritsma, J. (2017). Structures in supercritical scale-free percolation. Ann. Appl. Prob. 27, 25692604.10.1214/16-AAP1270CrossRefGoogle Scholar
Van der Hofstad, R. (2017). Random Graphs and Complex Networks, Vol. 1. Cambridge University Press.Google Scholar
Van der Hofstad, R. (2021). The giant in random graphs is almost local. Preprint. Available at https://arxiv. org/abs/2103.11733.Google Scholar
Van der Hofstad, R. (2021+). Random Graphs and Complex Networks, Vol. 2. In preparation.Google Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer, Cham.10.1007/978-3-319-41598-7CrossRefGoogle Scholar
Komjáthy, J. and Lodewijks, B. (2020). Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs. Stoch. Process. Appl. 130, 13091367.10.1016/j.spa.2019.04.014CrossRefGoogle Scholar
Krioukov, D. et al. (2010). Hyperbolic geometry of complex networks. Phys. Rev. E 82, paper no. 036106, 18 pp.Google ScholarPubMed
Kulik, R. and Soulier, P. (2020). Regularly varying random variables. In Heavy-Tailed Time Series, Springer, New York, pp. 321.10.1007/978-1-0716-0737-4_1CrossRefGoogle Scholar
Last, G. and Penrose, M. (2018). Lectures on the Poisson Process. Cambridge University Press.Google Scholar
Lee, B. and Campbell, K. (1999). Neighbor networks of black and white Americans. In Networks in the Global Village, Routledge, New York, pp. 119146.Google Scholar
Penrose, M. (2003). Random Geometric Graphs. Oxford University Press.10.1093/acprof:oso/9780198506263.001.0001CrossRefGoogle Scholar
Potter, H. S. A. (1942). The mean values of certain Dirichlet series, II. Proc. London Math. Soc. 47, 119.10.1112/plms/s2-47.1.1CrossRefGoogle Scholar
Wellman, B., Carrington, P. and Hall, A. (1988). Networks as personal communities. In Social Structures: A Network Approach, Cambridge University Press, pp. 130–184.Google Scholar
Wellman, B. and Wortley, S. (1990). Different strokes from different folks: community ties and social support. Amer. J. Sociol. 96, 558588.10.1086/229572CrossRefGoogle Scholar
Wong, L. H., Pattison, P. and Robins, G. (2006). A spatial model for social networks. Physica A 360, 99120.10.1016/j.physa.2005.04.029CrossRefGoogle Scholar