Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T00:03:07.335Z Has data issue: false hasContentIssue false

An extension of de Finetti's theorem

Published online by Cambridge University Press:  01 July 2016

J. W. Pitman*
Affiliation:
University of Cambridge

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
I. Invited Review and Research Papers
Copyright
Copyright © Applied Probability Trust 1978 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Föllmer, H. (1975) Séminaire de Probabilités IX, 305317.Google Scholar
[2] Georgii, H. O. (1975) Canonical Gibbs states, their relation to Gibbs states, and applications to two-valued Markov chains. Z. Wahrscheinlichkeitsth. 32, 277300.Google Scholar
[3] Georgii, H. O. (1976) On canonical Gibbs states, symmetric and tail events. Z. Wahrscheinlichkeitsth. 33, 331341.Google Scholar
[4] Preston, C. (1974) Gibbs States on Countable Sets. Cambridge Tracts in Mathematics 68, Cambridge University Press.Google Scholar
[5] Preston, C. (1976) Random Fields. Lecture Notes in Mathematics, 534, Springer-Verlag, Berlin.Google Scholar
[6] Spitzer, F. (1974) Introduction aux Processus de Markov à Paramètres dans Zv. École d'Eté de Probabilités de Saint-Flour III (1973). Lecture Notes in Mathematics 390, Springer-Verlag, Berlin.Google Scholar