Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T19:29:02.839Z Has data issue: false hasContentIssue false

Unified a Priori Error Estimate and a Posteriori Error Estimate of CIP-FEM for Elliptic Equations

Published online by Cambridge University Press:  27 May 2016

Jianye Wang*
Affiliation:
LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
Rui Ma*
Affiliation:
LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
*
*Corresponding author. Email:[email protected] (J. Y. Wang), [email protected] (R. Ma)
*Corresponding author. Email:[email protected] (J. Y. Wang), [email protected] (R. Ma)
Get access

Abstract

This paper is devoted to a unified a priori and a posteriori error analysis of CIP-FEM (continuous interior penalty finite element method) for second-order elliptic problems. Compared with the classic a priori error analysis in literature, our technique can easily apply for any type regularity assumption on the exact solution, especially for the case of lower H1+s weak regularity under consideration, where 0 ≤ s ≤ 1/2. Because of the penalty term used in the CIP-FEM, Galerkin orthogonality is lost and Céa Lemma for conforming finite element methods can not be applied immediately when 0≤s≤1/2. To overcome this difficulty, our main idea is introducing an auxiliary C1 finite element space in the analysis of the penalty term. The same tool is also utilized in the explicit a posteriori error analysis of CIP-FEM.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adams, R. A., Sobolev spaces, New York: Academic Press, 1975.Google Scholar
[2]Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, 2011.Google Scholar
[3]Alfred, H. S. and Wang, J., Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comput., 65 (1996), pp. 1927.Google Scholar
[4]Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), pp. 742760.Google Scholar
[5]Babuska, I., The finite element method with penalty, Math. Comput., 27 (1973), pp. 221228.Google Scholar
[6]Babuska, I. and Zlámal, M., Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 5 (1973), pp. 863875.CrossRefGoogle Scholar
[7]Bank, R. E. and Smith, R. K., A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal., 4 (1993), pp. 921935.Google Scholar
[8]Bank, R. E. and Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comput., 44 (1985), pp. 283301.Google Scholar
[9]Brenner, S. C. and Sung, L. Y., C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22 (2005), pp. 83118.Google Scholar
[10]Brenner, S. C. and Scott, L. R., The Mathematical Thoery of Finite Element Methods, third ed., Springer-Verlag, 2008.Google Scholar
[11]Döfler, W., Convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 3 (1996), pp. 11061124.CrossRefGoogle Scholar
[12]Douglas, J. Jr. and Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Physics, Springer Berlin Heidelberg, 58 (1976), pp. 207216.Google Scholar
[13]Hu, J., Ma, R. and Shi, Z., A new a error estimate of nonconforming finite element methods, Sci. China Math., 5 (2014), pp. 887902.Google Scholar
[14]Lions, J. L., Problèm aux limits non homogènes à donées : Une mèthode d'approxiamtion, Numerical Analysis of PDEs, Edizioni Cremonese, Rome, 1968, pp. 283–292.CrossRefGoogle Scholar
[15]Nitsche, J. A., Über ein variationsprinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, din keinen Randbedingungen unteworfen sind, Abh. Math. Sem. Univ. Hambburg, 36 (1971), pp. 915.Google Scholar
[16]Nochetto, R. H. and Siebert, K. G., Veeser A, Theory of adaptive finite element methods: an introduction, Multiscale, nonlinear and adaptive approximation, Springer Berlin Heidelberg, 2009, pp. 409542.Google Scholar
[17]Shi, Z. and Wang, M., Finite element Methods, Science Press, Beijing, 2013.Google Scholar
[18]Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 1 (1978), pp. 152161.Google Scholar
[19]Wu, H., Continuous Interior Penalty Finite Element Methods for the Helmholtz Equation with Large Wave Number, arXiv preprint arXiv:1106.4079, 2011.Google Scholar
[20]Zienkiewicz, O. C., Constrained variational principles and penalty function methods in finite element analysis, Conference on the Numerical Solution of Differential Equations, Lectural Notes in Mathematics, Springer, New York, 1973.Google Scholar
[21]Zienkiewicz, O. C. and Zhu, J., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Eng., 7 (1982), pp. 13311364.Google Scholar