Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T05:26:48.612Z Has data issue: false hasContentIssue false

Sinc Collocation Solutions for the Integral Algebraic Equation of Index-1

Published online by Cambridge University Press:  08 July 2016

Jingjun Zhao*
Affiliation:
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Yang Cao
Affiliation:
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Yang Xu*
Affiliation:
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
*
*Corresponding author. Email:[email protected] (J. J. Zhao), [email protected] (Y. Xu)
*Corresponding author. Email:[email protected] (J. J. Zhao), [email protected] (Y. Xu)
Get access

Abstract

In this article, Sinc collocation method is considered to obtain the numerical solution of integral algebraic equation of index-1 by reducing it to an explicit system of algebraic equation. It is shown that Sinc collocation solution can produce an error of order . Moreover, Sinc method is applied to several examples to illustrate the accuracy and implementation of the method.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Al-Khaled, K., Numerical approximations for population growthmodels, Appl. Math. Comput., 160 (2005), pp. 865873.Google Scholar
[2]Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
[3]Cannon, J. R., The One Dimensional Heat Equation, Cambridge University Press, Cambridge, 1984.CrossRefGoogle Scholar
[4]Gear, C. W., Differential-algebraic equations, indices, and integral-algebraic equations, SIAM Numer. Anal., 27 (1990), pp. 15271534.CrossRefGoogle Scholar
[5]Gomilko, A. M., A Dirichlet problem for the biharmonic equation in a semi-infinite strip, J. Eng. Math., 46 (2003), pp. 253268.CrossRefGoogle Scholar
[6]Hadizadeh, M., Ghoreishi, F. and Pishbin, S., Jacobi spectral solution for integral-algebraic equations of index-2, Appl. Numer. Math., 61 (2011), pp. 131148.CrossRefGoogle Scholar
[7]Kafarov, V. V., Mayorga, B. and Dallos, C., Mathematical method for analysis of dynamic processes in chemical reactors, Chem. Eng. Sci., 54 (1999), pp. 46694678.CrossRefGoogle Scholar
[8]Kauthen, J. P., The numerical soluton of integral-algebraic equations of index-1 by polynomial spline collocation methods, Math. Comput., 236 (2000), pp. 15031514.CrossRefGoogle Scholar
[9]Pishbin, S., Ghoreishi, F. and Hadizadeh, M., A posteriori error estimation for the Legendre collocation method applied to integral-algebraic Volterra equations, Electron. Trans. Numer. Anal., 38 (2011), pp. 327346.Google Scholar
[10]Rashidinia, J. and Zarebnia, M., Solution of a Volterra integral equation by the Sinc-collocation method, J. Comput. Appl. Math., 206 (2007), pp. 801813.CrossRefGoogle Scholar
[11]Smith, R. C., Bogar, G. A., Bowers, K. L. and Lund, J., The Sinc-Galerkin method for fourth-order differential equations, SIAM J. Numer. Anal., 28 (1991), pp. 760788.CrossRefGoogle Scholar
[12]Smith, R. C., Bowers, K. L. and Lund, J., Fully Sinc-Galerkin method for Euler-Bernoulli beam modles, Numer. Methods Partial Differential Equations, 8 (1992), pp. 171202.CrossRefGoogle Scholar
[13]Smith, R. C. and Bowers, K. L., A Sinc-Galerkin estimation of diffusivity in parabolic problems, Inverse. Probl., 9 (1993), pp. 113145.CrossRefGoogle Scholar
[14]Stenger, F., Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York, 1993.CrossRefGoogle Scholar
[15]Sugihara, M. and Matsuo, T., Recent developments of the Sinc numerical methods, J. Comput. Appl. Math., 164-165 (2004), pp. 673689.CrossRefGoogle Scholar
[16]Winnter, D. F., Bowers, K. L. and Lund, J., Wind-driven currents in a sea with variable eddy viscosity calculated via a Sinc-Galerkin technique, J. Numer. Methods Fluids, 33 (2000), pp. 10411073.3.0.CO;2-P>CrossRefGoogle Scholar
[17]Zarebnia, M., Sinc numerical solution for the Volterra integro-differential equation, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), pp. 700706.CrossRefGoogle Scholar