Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:29:09.023Z Has data issue: false hasContentIssue false

Runge-Kutta Discontinuous Galerkin Method with Front Tracking Method for Solving the Compressible Two-Medium Flow on Unstructured Meshes

Published online by Cambridge University Press:  11 October 2016

Haitian Lu*
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Jun Zhu*
Affiliation:
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Chunwu Wang*
Affiliation:
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Ning Zhao*
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
*
*Corresponding author. Email:[email protected] (H. T. Lu), [email protected] (J. Zhu), [email protected] (C. W. Wang), [email protected] (N. Zhao)
*Corresponding author. Email:[email protected] (H. T. Lu), [email protected] (J. Zhu), [email protected] (C. W. Wang), [email protected] (N. Zhao)
*Corresponding author. Email:[email protected] (H. T. Lu), [email protected] (J. Zhu), [email protected] (C. W. Wang), [email protected] (N. Zhao)
*Corresponding author. Email:[email protected] (H. T. Lu), [email protected] (J. Zhu), [email protected] (C. W. Wang), [email protected] (N. Zhao)
Get access

Abstract

In this paper, we extend using the Runge-Kutta discontinuous Galerkin method together with the front tracking method to simulate the compressible two-medium flow on unstructured meshes. A Riemann problem is constructed in the normal direction in the material interfacial region, with the goal of obtaining a compact, robust and efficient procedure to track the explicit sharp interface precisely. Extensive numerical tests including the gas-gas and gas-liquid flows are provided to show the proposed methodologies possess the capability of enhancing the resolutions nearby the discontinuities inside of the single medium flow and the interfacial vicinities of the two-medium flow in many occasions.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach, J. Comput. Phys., 125 (1996), pp. 150160.CrossRefGoogle Scholar
[2] Caiden, R., Fedkiw, R. P. and Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166 (2001), pp. 127.Google Scholar
[3] Chern, I.-L., Glimm, J., McBryan, O., Plohr, B. and Yaniv, S., Front tracking for gas dynamics, J. Comput. Phys., 62 (1986), pp. 83110.Google Scholar
[4] Cocchi, J.-P. and Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J. Comput. Phys., 137 (1997), pp. 265298.Google Scholar
[5] Cockburn, B., Hou, S. and Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54 (1990), pp. 545581.Google Scholar
[6] Cockburn, B., Lin, S.-Y. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84 (1989), pp. 90113.Google Scholar
[7] Cockburn, B. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52 (1989), pp. 411435.Google Scholar
[8] Cockburn, B. and Shu, C.-W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 25 (1991), pp. 337361.Google Scholar
[9] Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199224.CrossRefGoogle Scholar
[10] Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175 (2002), pp. 200224.CrossRefGoogle Scholar
[11] Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), pp. 457492.Google Scholar
[12] Glimm, J., Grove, J.W., Li, X. L., Shyue, K.-M., Zeng, Y. and Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19 (1998), pp. 703727.CrossRefGoogle Scholar
[13] Glimm, J., Grove, J. W., Li, X. L. and Zhao, N., Simple front tracking, Contemp. Math., 238 (1999), pp. 133149.Google Scholar
[14] Glimm, J., Grove, J. W., Li, X. L., Oh, W. and Sharp, D. H., A critical analysis of Rayleigh-Taylor growth rates, J. Comput. Phys., 169 (2001), pp. 652677.Google Scholar
[15] Hao, Y. and Prosperetti, A., A numerical method for three-dimensional gas-liquid flow computations, J. Comput. Phys., 196 (2004), pp. 126144.Google Scholar
[16] Hass, J.-F. and Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181 (1987), pp. 4176.Google Scholar
[17] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. phys., 112 (1994), pp. 3143.CrossRefGoogle Scholar
[18] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95 (1991), pp. 5984.Google Scholar
[19] Liu, T. G., Khoo, B. C. and Yeo, K. S., The simulation of compressible multi-medium flow I: a new methodology with test applications to 1D gas-gas and gas-water cases, Comput. Fluids, 30 (2001), pp. 291314.Google Scholar
[20] Lu, H., Zhao, N. and Wang, D., A front tracking method for the simulation of compressible multimedium flows, Commun. Comput. Phys., 19 (2016), pp. 124142.Google Scholar
[21] Mulder, W., Osher, S. and Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100 (1992), pp. 209228.CrossRefGoogle Scholar
[22] Nourgaliev, R. R., Dinh, T. N. and Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213 (2006), pp. 500529.Google Scholar
[23] Osher, S. and Fedkiw, R. P., Level set methods: an overview and some recent results, J. Comput. Phys., 169 (2001), pp. 463502.Google Scholar
[24] Picone, J. M. and Boris, J. P., Vorticity generation by shock propagation through bubbles in a gas, J. Fluid Mech., 189 (1988), pp. 2351.Google Scholar
[25] Qiu, J., Liu, T. G. and Khoo, B. C., Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method, Commun. Comput. Phys., 3 (2008), pp. 479504.Google Scholar
[26] Quirk, J. J. and Karni, S., On the dynamics of a Shock-bubble interaction, J. Fluid Mech., 318 (1996), pp. 129163.Google Scholar
[27] Reed, W. H. and Hill, T. R., Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.Google Scholar
[28] Shu, C.-W., TVB uniformly high-order schemes for conservation laws, Math. Comput., 49 (1987), pp. 105121.Google Scholar
[29] Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77 (1988), pp. 439471.CrossRefGoogle Scholar
[30] Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142 (1998), pp. 208242.CrossRefGoogle Scholar
[31] Terashima, H. and Tryggvason, G., A front tracking/ghost fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228 (2009), pp. 40124037.Google Scholar
[32] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. and Jan, Y.-J., A front tracking method for the computations of multiphase flow, J. Comput. Phys., 169 (2001), pp. 708759.Google Scholar
[33] Wang, C. W., Liu, T. G. and Khoo, B. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28 (2006), pp. 278302.Google Scholar
[34] Zhu, J. and Qiu, J., Adaptive Runge-Kutta discontinuous Galerkin methods with modified ghost fluid method for simulating the compressible two-medium flow, J. Math. Study, 47 (2014), pp. 250273.Google Scholar