Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T21:53:09.310Z Has data issue: false hasContentIssue false

Asymptotic Analysis of Travelling Wave Solutions in Chemotaxis with Growth

Published online by Cambridge University Press:  11 July 2017

P. M. Tchepmo Djomegni*
Affiliation:
School of Mathematics, Statistics and Computer science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
K. S. Govinder
Affiliation:
School of Mathematics, Statistics and Computer science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
*
*Corresponding author. Email:[email protected], [email protected] (P. M. T. Djomegni)
Get access

Abstract

Mass migration of cells (via wave motion) plays an important role in many biological processes, particularly chemotaxis. We study the existence of travelling wave solutions for a chemotaxis model on a microscopic scale. The interaction between nutrients and chemoattractants are considered. Unlike previous approaches, we allow for diffusion of substrates, degradation of chemoattractants and cell growth (constant and linear growth rate). We apply asymptotic methods to investigate the behaviour of the solutions when cells are highly sensitive to extracellular signalling. Explicit solutions are demonstrated, and their biological implications are presented. The results presented here extend and generalize known results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adler, J., Chemotaxis in bacteria, Science, 153 (1966), pp. 708716.Google Scholar
[2] Adler, J., Effect of amino acids and oxygen on chemotaxis in escherichia coli, J. Bacteriol., 92 (1966), pp. 121129.Google Scholar
[3] Adler, J., Chemotaxis in bacteria, Annu. Rev. Biochem., 44 (1975), pp. 341356.Google Scholar
[4] Alt, W., Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980), pp. 147177.Google Scholar
[5] Beyerinck, M., Ueber spirillum desulfuricans als ursache von sulfatreduction, Zentralbl. Bakteriol. Parasitenkd., 1 (1895), pp. 19.Google Scholar
[6] Bluman, G. W. and Anco, S. C., Symmetry and Integration Methods for Differential Equations, Appl. Math. Sci., Springer-Verlag, New York, 2002.Google Scholar
[7] Brenner, M., Levitor, L. and Brudrene, E., Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., 74 (1998), pp. 16771693.Google Scholar
[8] Budrene, E. O. and Berg, H. C., Complex patterns formed by motile cells of escherichia coli, Nature, 349 (1991), pp. 630633.Google Scholar
[9] Budrene, E. O. and Berg, H. C., Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), pp. 4953.Google Scholar
[10] Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J. and Knuth, D. E., On the Lamber W function, Adv. Comput. Math., 5 (1996), pp. 329359.Google Scholar
[11] Elliott, N., Lee, T., You, L. and Yuan, F., Proliferation behaviour of E coli in a three-dimensional in vitro tumor, Integrative Biology, 3 (2011), pp. 696705.Google Scholar
[12] Engelmann, T., Neue methode zur untersuchung der sauerstoffaussheidung pflanzlicher und thierischer organismen, Pflugers Arch. Gesamte Physiol., 25 (1881a), pp. 285292.Google Scholar
[13] Engelmann, T., Zur biologie der schizomyceten, Pflugers Arch. Gesamte Physiol., 26 (1881b), pp. 537545.Google Scholar
[14] Erban, R. and Othmer, H. G., From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math., 65 (2004), pp. 361391.Google Scholar
[15] Erban, R. and Othmer, H. G., Taxis equations for amoeboid cells, J. Math. Biol., 54 (2007), pp. 847885.CrossRefGoogle ScholarPubMed
[16] Franz, B., Xue, C., Painter, K. and Erban, R., Travelling waves in hybrid chemotaxis models, Bull. Math. Biol., 76(2) (2014), pp. 377400.Google Scholar
[17] Gompertz, B., On the Nature of the function expressive of the law of human mortality, and on a mew Mode of determining the value of life contingencies, Phil. Trans. R. Soc., 115 (1825), pp. 513585.Google Scholar
[18] Hillen, T. and Othmer, H. G., The diffusion limit of transport equation derived from velocity-jump processes, SIAM J. Appl. Math., 61 (2000), pp. 751775.Google Scholar
[19] Keller, E. F. and Segel, L. A., Initiation of slim mold aggregation viewed as an instability, J. Theo. Biol., 26 (1970), pp. 399415.Google Scholar
[20] Keller, E. F. and Segel, L. A.,Model for chemotaxis, J. Theo. Biol., 30(2) (1971a), pp. 225234.CrossRefGoogle ScholarPubMed
[21] Keller, E. F. and Segel, L. A., Travelling bands of chemotactic bacteria: a theoretical analysis, J. Theo. Biol., 30(2) (1971b), pp. 235248.CrossRefGoogle ScholarPubMed
[22] Kennedy, C. R. and Aris, R., Travelling waves in a simple population model involving growth and death, Bull. Math. Biol., 42 (1980), pp. 397429.Google Scholar
[23] Kuznetsov, A. V. and Avramenko, A. A., A macroscopic model of traffic jams in axons, Math. Biosci., 218(2) (2009), pp. 142152.Google Scholar
[24] Lapidus, I. R. and Schiller, R., A model for travelling bands of chemotactic bacteria, J. Theo. Biol., 22 (1978), pp. 113.Google Scholar
[25] Lauffenburger, D. A., Kennedy, C. and Aris, R., Travelling band of bacteria in the context of population growth, Bull. Math. Biol., 46(1) (1984), pp. 1940.Google Scholar
[26] Lauffenburger, D. A., Aris, R. and Keller, K., Effects of random motility on growth of bacterial populations, Microb. Ecol., 7(3) (1981), pp. 207227.CrossRefGoogle ScholarPubMed
[27] Lui, R. and Wang, Z. A., Travelling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), pp. 739761.CrossRefGoogle ScholarPubMed
[28] Maini, P. K., McElwain, D. L. S. and Leavesley, D., Travelling waves in a wound healing assay, Appl. Math. Lett., 17 (2004), pp. 575580.Google Scholar
[29] Maki, N., Gestwicki, J. E., Lake, E. M., Kiessling, L. L. and Adler, J., Motility and chemotaxis of filamentous cells of escherichia coli, J. Bacteriol., 182 (2000), pp. 43374342.Google Scholar
[30] Nossal, R., Boundary movement of chemotactic bacterial populations, Math. Biosci., 13 (1972), pp. 397406.CrossRefGoogle Scholar
[31] Othmer, H. G. and Schapp, P., Oscillatory cAMP signalling in the development of dictyostelium discoideum, Comments Theo. Biol., 5 (1998), pp. 175282.Google Scholar
[32] Othmer, H. G, Dunbar, S. R. and Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26 (1988), pp. 263298.CrossRefGoogle ScholarPubMed
[33] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), pp. 311338.Google Scholar
[34] Paul, K., Nieto, V., Carlquist, W. C., Blair, D. F. and Harshey, R. M., The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “Backstop Brake” mechanism, Mol. Cell., 38 (2010), pp. 128139.Google Scholar
[35] Pfeffer, W., Über chemotaktische bewegungen von bacterien, flagellaten and volvocineen, Unt. Bot. Inst. Tübingen, 2(III) (1888), pp. 582661.Google Scholar
[36] Rosen, G., Effects of diffusion on the stability of the equilibrium in multi-species ecological systems, Bull. Math. Biol., 39 (1977), pp. 373383.Google Scholar
[37] Scribner, T., Segel, L. and Rogers, E., A numerical study of the formation and the propagation of travelling bands of chemotactic bacteria, J. Theor. Biol., 46 (1974), pp. 189219.Google Scholar
[38] Sourjik, V., Receptor clustering and signal processing in E coli chemotaxis, Trends Microbio., 12(12) (2004), pp. 569576.Google Scholar
[39] Spiro, P., Parkinson, J. and Othmer, H., A model of excitation and adaptation in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA, 94 (1997), pp. 72637268.Google Scholar
[40] Stewart, J. M., Broadbridge, P. and Goard, J. M., Symmetry analysis and numerical modelling of invasion by malignant tumour tissue, Nonlinear Dyn., 28(2) (2002), pp. 175193.Google Scholar
[41] Tchepmo Djomegni, P. M. and Govinder, K. S., The interplay of group and dynamical systems analysis: The case of spherically symmetric charged fluids in general relativity, Int. J. Nonlinear Mech., 62 (2014), pp. 5872.Google Scholar
[42] Tchepmo Djomegni, P. M. and Govinder, K. S., Generalized travelling wave solutions for hyperbolic chemotaxis PDEs, Appl. Math. Mod., 40 (2016), pp. 56725688.Google Scholar
[43] Tindall, M. J., Porter, S., Maini, P., Gaglia, G. and Armitage, J., Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell, Bull. Math. Biol., 70(6) (2008), pp. 15251569.Google Scholar
[44] Tindall, M. J., Maini, P. K., Porter, S. L. and Armitage, J. P., Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations, Bull. Math. Biol., 70(6) (2008), pp. 15701607.Google Scholar
[45] Wang, Z. A., Mathematics of travelling waves in chemotaxis, Discr. Cont. Dyn. Syst., 18 (2013), pp. 601641.Google Scholar
[46] Woodward, D. E., Tyson, R., Myerscough, M. R., Budrene, E. O. and Berg, H. C., Spacio-temporal patterns generated by salmonella typhimurium, Biophys., 68 (1995), pp. 21812189.Google Scholar
[47] Xue, C., Hwang, H. J., Painter, K. J. and Erban, R., Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), pp. 16951733.CrossRefGoogle ScholarPubMed