Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T03:20:15.844Z Has data issue: false hasContentIssue false

Nonconforming Finite Element Method for the Transmission Eigenvalue Problem

Published online by Cambridge University Press:  11 October 2016

Xia Ji*
Affiliation:
LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
Yingxia Xi*
Affiliation:
LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
Hehu Xie*
Affiliation:
LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
*
*Corresponding author. Email:[email protected] (X. Ji), [email protected] (Y. Xi), [email protected] (H. Xie)
*Corresponding author. Email:[email protected] (X. Ji), [email protected] (Y. Xi), [email protected] (H. Xie)
*Corresponding author. Email:[email protected] (X. Ji), [email protected] (Y. Xi), [email protected] (H. Xie)
Get access

Abstract

In this paper, we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions. The error estimates of the eigenvalue and eigenfunction approximation are given, respectively. Finally, some numerical examples are provided to validate the theoretical results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] An, J. and Shen, J., A spectral-element method for transmission eigenvalue problems, J. Sci. Comput., 57 (2013), pp. 670688.CrossRefGoogle Scholar
[2] Babuška, I. and Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of self-adjoint problems, Math. Comput., 52 (1989), pp. 275297.CrossRefGoogle Scholar
[3] Babuška, I. and Osborn, J. E., Eigenvalue Problems, in: Lions, P. G. and Ciarlet, P. G. (eds.) Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), 641787, North-Holland, Amsterdam, 1991.Google Scholar
[4] Cakoni, F., Çayören, M. and Colton, D., Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Probl., 24 (2008), 065016.Google Scholar
[5] Cakoni, F., Colton, D., Monk, P. and Sun, J., The inverse electromagnetic scattering problem for anisotropic media, Inverse Probl., 26 (2010), 074004.Google Scholar
[6] Cakoni, F., Gintides, D. and Haddar, H., The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), pp. 237255.Google Scholar
[7] Cakoni, F. and Haddar, H., Transmission eigenvalues in inverse scattering theory, Inside Out II, Uhlmann, G. editor, MSRI Publications 60 (2012), pp. 526578.Google Scholar
[8] Cakoni, F., Monk, P. and Sun, J., Error analysis of the finite element approximation of transmission eigenvalues, Comput. Methods Appl. Math., 14 (2014), pp. 419427.Google Scholar
[9] Chen, H., Chen, S. and Qiao, Z., C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem, Numer. Math., 124(1) (2013), pp. 99119.CrossRefGoogle Scholar
[10] Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Springer-Verlag, New York, 1998.CrossRefGoogle Scholar
[11] Colton, D., Monk, P. and Sun, J., Analytical and computational methods for transmission eigenvalues, Inverse Probl., 26 (2010), 045011.CrossRefGoogle Scholar
[12] Colton, D., Päivärinta, L. and Sylvester, J., The interior transmission problem, Inverse Probl. Imag., 1 (2007), pp. 1328.Google Scholar
[13] Grisvard, Pierre, Singularities in Boundary Problems, MASSON and Springer-Verlag, 1985.Google Scholar
[14] Hsiao, G., Liu, F., Sun, J. and Xu, L., A coupled BEM and FEM for the interior transmission problem in acoustics, J. Comput. Appl. Math., 235 (2011), pp. 52135221.Google Scholar
[15] Ji, X., Sun, J. and Turner, T., A mixed finite element method for Helmholtz transmission eigenvalues, ACMT. Math. Software, 38 (2012), Algorithm 922.Google Scholar
[16] Ji, X., Sun, J. and Xie, H., A multigrid method for Helmholtz transmission eigenvalue problems, J. Sci. Comput., 60 (2014), pp. 276294.CrossRefGoogle Scholar
[17] Kirsch, K., On the existence of transmission eigenvalues, Inverse Probl. Imag., 3 (2009), pp. 155172.CrossRefGoogle Scholar
[18] Li, T., Huang, W., Lin, W. and Liu, J., On spectral analysis and a novel algorithm for transmis-sion eigenvalue problems, J. Sci. Comput., 64 (2015), pp. 83108.Google Scholar
[19] Monk, P. and Sun, J., Finite element methods of Maxwell transmission eigenvalues, SIAM J. Sci. Comput., 34 (2012), pp. B247–B264.CrossRefGoogle Scholar
[20] Päivärinta, L. and Sylvester, J., Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), pp. 738753.Google Scholar
[21] Rannacher, R., Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math., 33 (1979), pp. 2342.CrossRefGoogle Scholar
[22] Rudin, W., Functional Analysis (2nd ed.), McGraw-Hill, Inc., New York, 1991.Google Scholar
[23] Sun, J., Estimation of transmission eigenvalues and the index of refraction from Cauchy data, Inverse Probl., 27 (2011), 015009.Google Scholar
[24] Sun, J., Iterative methods for transmission eigenvalues, SIAM J. Numer. Anal., 49 (2011), pp. 18601874.Google Scholar
[25] Wu, X. and Chen, W., Error estimates of the finite element method for interior transmission problems, J. Sci. Comput., 57 (2013), pp. 331348.CrossRefGoogle Scholar
[26] Yao, C. and Qiao, Z., Extrapolation of mixed finite element approximations for the Maxwell eigenvalue problem, Numer. Math. Theory Methods Appl., 4(3) (2011), pp. 379395.Google Scholar