Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T09:45:12.706Z Has data issue: false hasContentIssue false

Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods

Published online by Cambridge University Press:  03 June 2015

Long Chen*
Affiliation:
Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
Ming Wang*
Affiliation:
LMAM, School of Mathematical Sciences, Peking University, Beijing 100080, China
*
Corresponding author. Email: [email protected]
Get access

Abstract

A cell conservative flux recovery technique is developed here for vertex-centered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant free a posteriori error estimator which is proven to be reliable and efficient. Some numerical tests are presented to confirm the theoretical results. Our method works for general order finite volume methods and the recovery-based and residual-based a posteriori error estimators is the first result on a posteriori error estimators for high order finite volume methods.

Type
Research Article
Copyright
Copyright © Global-Science Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Achdou, Y., Bernardi, C., and Coquel, F., A priori and a posteriori analysis of finite volume discretizations of Darcys equations, Numer. Math., 96 (2003), pp. 1742.Google Scholar
[2]Afif, M., Bergam, A., Mghazli, Z., and Verfürth, R., A posteriori estimators for the finite volume discretization of an elliptic problem, Numer. Algorithms, 34 (2003), pp. 127136.CrossRefGoogle Scholar
[3]Agouzal, A. and Oudin, F., A posteriori error estimator for finite volume methods, Math. Comput., 110 (2000), pp. 239250.Google Scholar
[4]Ainsworth, M., A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements, SIAM J. Sci. Comput., 30 (2007/08), pp. 189204.Google Scholar
[5]Ainsworth, M. and Oden, J., A posteriori error estimation in finite element analysis, Wiley-Interscience, 2000.Google Scholar
[6]Ainsworth, M. and Rankin, R., Fully computable bounds for the error in nonconforming finite element aoximations of arbitrary order on triangular elements, SIAM J. Numer. Anal., 46 (2008), pp. 32073232.Google Scholar
[7]Bank, R. and Rose, D., Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), pp. 777787.CrossRefGoogle Scholar
[8]Braess, D., Finite Elements: Theory, Fast Solvers, and Aications in Solid Mechanics, 2nd ed., Cambridge University Press, Cambridge, 2001.Google Scholar
[9]Braess, D. and Schoberl, J., Equilibrated residual error estimator for edge elements, Math. Comput., 77 (2008), pp. 651672.Google Scholar
[10]Cai, Z., Douglas, J. Jr, and Park, M., Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Adv. Comput. Math., 19 (2003), pp. 333.Google Scholar
[11]Cai, Z. and Zhang, S., Recovery-based error estimator for interface problems: conforming linear elements, SIAM J. Numer. Anal., 47 (2009), pp. 21322156.Google Scholar
[12]Carstensen, C., Lazarov, R., and Tomov, S., Explicit and averaging a posteriori error estimates for adaptive finite volume methods, SIAM J. Numer. Anal., 42 (2005), pp. 24962521.Google Scholar
[13]Chen, L., iFEM: An Integrated Finite Element Methods Package in Matlab, University of California at Irvine, Technical Report, 2009.Google Scholar
[14]Chen, L., A new class of high order finite volume methods for second order elliptic equations, SIAM J. Numer. Anal., 47 (2010), pp. 40214043.Google Scholar
[15]Chou, S., He, S., and Lin, W., Conservative flux recovery from the Q1 conforming finite element method on quadrilateral grids, Numer. Methods Partial Differential Equations, 20 (2004), pp. 104127.Google Scholar
[16]Chou, S., Kwak, D., and Kim, K., Flux recovery from primal hybrid finite element methods, SIAM J. Numer. Anal., 40 (2003), pp. 403415.Google Scholar
[17]Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106112.CrossRefGoogle Scholar
[18]Erath, C. and Praetorius, D., A posteriori error estimate and adaptive mesh-refinement for the cell-centered finite volume method for elliptic boundary value problems, SIAM J. Numer. Anal., 47 (2008), pp. 109135.Google Scholar
[19]Karakashian, O. and Pascal, F., A posteriori error estimates for a discontinuous Galerkin aoximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 23742399.Google Scholar
[20]Kellogg, R., On the Poisson equation with intersecting interfaces, Aicable Anal., 4 (1974), pp. 101129.Google Scholar
[21]Li, R., Chen, Z., and Wu, W., Generalized Difference Methods for Differential Equations, Marcel Dekker, New York, 2000.Google Scholar
[22]Liebau, F., The finite volume element method with quadratic basis functions, Computing, 57 (1996), pp. 281299.CrossRefGoogle Scholar
[23]Morin, P., Nochetto, R., and Siebert, K., Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2001), pp. 466488.CrossRefGoogle Scholar
[24]Nicaise, S., A posteriori error estimations of some cell-centered finite volume methods, SIAM J. Numer. Anal., 43 (2005), pp. 14811503.Google Scholar
[25]Li, Y., Shu, S., Xu, Y., and Zou, Q., Multilevel preconditioning for the finite volume method, Math. Comput., 81 (2012), pp. 13991428.Google Scholar
[26]Li, Y. and Li, R., Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 17 (1999), pp. 653672.Google Scholar
[27]Shu, S., Yu, H., Huang, Y. and Nie, C., A symmetric finite volume element scheme on quadrilateral grids and superconvergence, J. Numer. Anal. Model., 1 (2006), pp. 118.Google Scholar
[28]Liang, S., Ma, X. and Zhou, A., Finite volume methods for eigenvalue problems, BIT, 41 (2000), pp. 345363.CrossRefGoogle Scholar
[29]Liang, S., Ma, X., and Zhou, A., A symmetric finite volume scheme for selfadjoint elliptic problems, J. Comput. A. Math., 147 (2002), pp. 121136.Google Scholar
[30]Ma, X., Shu, S. and Zhou, A., Symmetric finite volume discretization for parabolic problems, Comput. Methods A. Mech. Eng., 192 (2003), pp. 44674485.Google Scholar
[31]Jiang, J., Shu, S. and Huang, Y., Symmetric finite volume element method in ICF, J. System Simulation.Google Scholar
[32]Prager, W. and Synge, J., Aoximations in elasticity based on the concept of function space, Quart. A. Math., 5 (1947), pp. 241269.Google Scholar
[33]Russell, T. and Wheeler, M., Finite element and finite difference methods for continuous flows in porous media, The Mathematics of Reservoir Simulation, 1 (1983), pp. 35106.CrossRefGoogle Scholar
[34]Stein, E. and Rüter, M., Finite element methods for elasticity with error-controlled discretization and model adaptivity, Encyclopedia of Computational Mechanics, 2007.Google Scholar
[35]Süli, E., Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes, SIAM J. Numer. Anal., 28 (1991), pp. 14191430.Google Scholar
[36]Synge, J. and Rheinboldt, W., The hypercircle in mathematical physics, Phys. Today, (1957), pp. 1045.Google Scholar
[37]Tomov, S., Adaptive Methods for Finite Volume Aoximations, Thesis (Ph.D.)—Texas A& M University, 2002.Google Scholar
[38]Vejchodskỳ, T., Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal., 26 (2006), pp. 525540.Google Scholar
[39]Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester and New York, 1996.Google Scholar
[40]Vogel, A., Xu, J., and Wittum, G., A generalization of the vertex-centered finite volume scheme to arbitrary high order, Comput. Vis. Sci., 13 (2010), pp. 18.CrossRefGoogle Scholar
[41]Xu, J. and Zou, Q., Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numer. Math., 111 (2009), pp. 469492.Google Scholar
[42]Hilhorst, D. and Vohralík, M., A posteriori error estimates for combined finite volume-finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods A. Mech. Eng., 200 (2011), pp. 597613.Google Scholar