Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:58:48.202Z Has data issue: false hasContentIssue false

Asymptotic Expansions and Extrapolations of H1-Galerkin Mixed Finite Element Method for Strongly Damped Wave Equation

Published online by Cambridge University Press:  21 July 2015

Dongyang Shi
Affiliation:
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
Qili Tang*
Affiliation:
School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
Xin Liao
Affiliation:
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
*
*Corresponding author. Email: [email protected] (Q. L. Tang)
Get access

Abstract

In this paper, a high-accuracy H1-Galerkin mixed finite element method (MFEM) for strongly damped wave equation is studied by linear triangular finite element. By constructing a suitable extrapolation scheme, the convergence rates can be improved from 𝒪(h) to 𝒪(h3) both for the original variable u in H1(Ω) norm and for the actual stress variable p = ∇ut in H(div;Ω) norm, respectively. Finally, numerical results are presented to confirm the validity of the theoretical analysis and excellent performance of the proposed method.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Apel, T., Nicaise, S. and Schoberl, J., Crouzeix-Raviart type finite element on anisotropic meshes, Numer. Math., 89 (2001), pp. 193293.Google Scholar
[2]Chen, H. Z. and Wang, H., An optimal-order error estimates on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow, Numer. Meth. PDEs., 26 (2010), pp. 188205.Google Scholar
[3]Chen, H. Z., Zhou, Z. J. and Wang, H., An optimal-order error estimate for an H1-Galerkin mixed method for a pressure equation in compressible porous medium flow, Int. J. Numer. Anal. Model., 9 (2012), pp. 132148.Google Scholar
[4]Chen, Y. P., Dai, L. and Lu, Z. L., Superconvergence of rectangular mixed finite element methods for constrained optimal control problem, Adv. Appl. Math. Mech., 1 (2009), pp. 5675.Google Scholar
[5]Chen, Y. P., Hou, T. L. and Zheng, W. S., Error estimates and superconvergence of mixed finite element methods for optimal control problems with low regularity, Adv. Appl. Math. Mech., 4 (2012), pp. 751768.Google Scholar
[6]Fairweather, G., Lin, Q., Lin, Y. P., Wang, J. P. and Zhang, S. H., Asymptotic expansions and Richardson extrapolation of approximate solutions for second order elliptic problems on rectangular domains by mixed finite element methods, SIAM J. Numer. Anal., 44 (2006), pp. 11221149.Google Scholar
[7]Hu, J. and Shi, Z. C., Constrained quadrilateral nonconforming rotated Q1-element, J. Comput. Math., 33 (2005), pp. 561586.Google Scholar
[8]Huang, Q. M. and Yang, Y. D., A note on Richardson extrapolation of Galerkin methods for eigenvalue problemsof fredholm integral equations, J. Comput. Math., 26 (2008), pp. 598612.Google Scholar
[9]Jia, S. H., Li, D. L. and Zhang, S. H., Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods, Adv. Comput. Math., 29 (2008), pp. 337356.Google Scholar
[10]Larsson, S. and ThoméE, V., Partial Differential Equations with Numerical Methods, Springer-Verlag Berlin Heidelberg, 2003.Google Scholar
[11]Li, M. X., Lin, Q. and Zhang, S. H., Extrapolation and superconvergence of the Steklov eigenvalue problem, Adv. Comput. Math., 33 (2010), pp. 2544.Google Scholar
[12]Lin, Q., Huang, H. T. and Li, Z. C., New expansions of numerical eigenvalues for-Δu=λρu by nonconforming elements, Math. Comput., 77 (2008), pp. 20612084.Google Scholar
[13]Lin, Q. and Lin, J. F., Finite Element Methods: Accuracy and Improvement, Beijing: Science Press, 2006.Google Scholar
[14]Lin, Q., Tobiska, L. and Zhou, A. H., Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation, IMA J. Numer. Anal., 25 (2005), pp. 160181.Google Scholar
[15]Lin, Q. and Xie, H. H., Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element methods, Appl. Numer. Math., 59 (2009), pp. 18841893.Google Scholar
[16]Liu, H. P. and Yan, N. N., Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations, Adv. Comput. Math., 29 (2008), pp. 375392.Google Scholar
[17]Liu, Y. and Li, H., A new mixed finite element method for fourthed-order heavy damping wave equation, Math. Numer. Sinica, 32 (2010), pp. 157170 (in Chinese).Google Scholar
[18]Liu, Y. and Li, H., H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput., 212 (2009), pp. 446457.Google Scholar
[19]Liu, Y., Li, H., Wang, J. F. and He, S., Splitting positive definite mixed element methods for pseudo-hyperbolic equations, Numer. Meth. PDEs., 28 (2012), pp. 670688.Google Scholar
[20]Pani, A. K., An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), pp. 712727.Google Scholar
[21]Pani, A. K. and Fairweather, G., H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), pp. 231252.Google Scholar
[22]Pani, A. K., Sinha, R. K. and Otta, A. K., An H1-Galerkin mixed method for second order hyperbolic equations, Int. J. Numer. Anal. Model., 1 (2004), pp. 111129.Google Scholar
[23]Park, C. and Sheen, D. W., P 1nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 624640.Google Scholar
[24]Rannacher, R. and Turek, S., Simple nonconforming quadrilateral stokes element, Numer. Meth. PDEs., 8 (1992), pp. 97111.CrossRefGoogle Scholar
[25]Shi, D. Y., Liao, X. and Tang, Q. L., Highpy efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation, Appl. Math. Mech. Eng. Ed., 35 (2014), pp. 897912.Google Scholar
[26]Shi, D. Y. and Wang, H. H., Noncorforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sinica, 25 (2009), pp. 335344.Google Scholar
[27]Shi, D. Y., Wang, H. H. and Du, Y. P., An anisotropic nonconforming finite element method for approximating a class of nonlinear Sobolev equations, J. Comput. Math., 27 (2009), pp. 299314.Google Scholar
[28]Shi, D. Y. and Tang, Q. L., Nonconforming H1-Galerkin mixed finite element method for strongly damped wave equations, Numer. Funct. Anal. Optim., 34 (2013), pp. 13481369.Google Scholar
[29]Shi, D. Y. and Tang, Q. L., Superconvergence analysis of splitting positive definite nonconforming mixed finite element method for pseudo-hyperbolic equations, Acta Math. Appl. Sinica, 29 (2013), pp. 843854.Google Scholar
[30]Shi, D. Y., Tang, Q. L. and Dong, X. J., Superconvergence analysis of H1-Galerkin mixed finite element method for strongly damped wave equations, Math. Numer. Sinica, 34 (2012), pp. 317328 (in Chinese).Google Scholar
[31]Tripathya, M. and Sinha, R. K., Superconvergence of H1-Galerkin mixed finite element methods for parabolic problems, Appl. Anal., 88 (2009), pp. 12131231.CrossRefGoogle Scholar
[32]Tripathya, M. and Sinha, R. K., Superconvergence of H1-Galerkin mixed finite element methods for second-order elliptic equations, Numer. Funct. Anal. Optim., 33 (2012), pp. 320337.Google Scholar
[33]Xie, H. H., Extrapolation of the Nédélec element for the Maxwell equations by the mixed finite element method, Adv. Comput. Math., 29 (2008), pp. 135145.Google Scholar
[34]Yang, D. P., A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media, Numer. Meth. PDEs., 17 (2001), pp. 229249.Google Scholar
[35]Yin, X. B., Xie, H. H., Jia, S. H. and Gao, S. Q., Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods. J. Comput. Appl. Math., 215 (2008), pp. 127141.Google Scholar
[36]Zhang, J. S. and Yang, D. P., A splitting positive definite mixed element method for second-order hyperbolic equations, Numer. Meth. PDEs., 25 (2009), pp. 622636.Google Scholar