Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T03:55:39.812Z Has data issue: false hasContentIssue false

Effects of precision potato planting using GPS-based cultivation

Published online by Cambridge University Press:  01 June 2017

Y. Reckleben*
Affiliation:
Department of Agricultural Machinery at Kiel University of Applied Sciences
T. Grau
Affiliation:
Department of Agricultural Machinery at Kiel University of Applied Sciences
S. Schulz
Affiliation:
profi, Landwirtschaftsverlag GmbH, Münster
H. G. Trumpf
Affiliation:
solana GmbH & Co. KG, Germany, Hamburg
*
E-mail: [email protected]
Get access

Abstract

Site-specific management provides the ability to align the production intensity to demand and thus adjust the expenses to the necessary level. So it is possible to increase the proportion of marketable commodity in the normal sort–size of 40 mm to 60 mm. Planting distances adapted to the soil properties seem to achieve this objective. It is possible to further optimize the proportion of marketable commodity especially in the potato regions where irrigation and fertilization already contribute to a consistently high yield. Different planting distances on the soil sites by EM38 were tested in field trials. Planting distances of 31.50 cm in the row on the light (sandy) soil, 24.50 cm on middle and 27.50 cm on the heavy soil sites seems the best for these three years. There is a yield impact in total, as well as in the proportion of marketable commodity. Depending on the planting strategy, increases in income up to €153 per hectare can be obtained.

Type
Tillage and Seeding
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AMI 2012. AMI Markt Bilanz Kartoffeln. Daten|Fakten|Entwicklung| Deutschland|EU|Welt. Agrarmarkt Informations-Gesellschaft mbH, Bonn, Germany.Google Scholar
Gebbers, R, Lück, E, Dabas, M and Domsch, H 2009. Comparison of instruments for geoelectrical soil mapping at the field scale. Near Surface Geophysics, 7, pp. 179190.Google Scholar
Gröschl, K 2012. Ertrags- und Qualitätsbeeinflussung bei der Pflanzgutvorbereitung und Saatbettbnereitung. Kartoffelbau 63, DLG Agrofood Medien GmbH, pp. 19–23, Bonn, Germany.Google Scholar
Heege, HJ 2013. Precision in Crop Farming. Springer Dordrecht Heidelberg, New York London.Google Scholar
Isensee, E and Reckleben, Y 2008. Teilflächenspezifische Aussaat von Zuckerrüben. Site specific sowing of sugar beets. Professor-Udo-Riemann-Stiftung, Nr. 35, pp. 420–442, Rendsburg, Germany.Google Scholar
Reckleben, Y 2004. Innovative Echtzeitsensorik zur Bestimmung und Regelung der Produktqualität von Getreide während des Mähdruschs. Forschungsbericht Agrartechnik VDI-MEG, Nr. 424, PhD Thesis, Kiel, Germany.Google Scholar
Reckleben, Y and Schulz, S 2014. precision potato planting using GPS-based cultivation. Landtechnik 69 (4), 2014, pp. 190–195, Darmstadt, Germany.Google Scholar
Schwark, A and Reckleben, Y 2006. Das EM 38–System als Bodensensor für die Praxis, Rationalisierungs-Kuratorium für Landwirtschaft, pp. 1226–1245, Rendsburg, Germany.Google Scholar
Trumpf, HG 2016. Site specific yield mapping based on a comparison of weighing systems in the potato under practical conditions. Master Thesis, Kiel University of Applied Sciences, Faculty of Agriciulture, Osterrönfeld, Germany.Google Scholar
Webster, R and Oliver, MA 2001. Geostatistics for Environmental Scientists. John Wiley & Sons Ltd, Chichester, UK.Google Scholar