Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:36:51.450Z Has data issue: false hasContentIssue false

Crop Production of the future – possible with a new approach?

Published online by Cambridge University Press:  01 June 2017

L.-M. Urso*
Affiliation:
Institute for Application Techniques in Plant Protection, Julius Kühn-Institute, Messeweg 11/12, 38104 Braunschweig, Germany
J. K. Wegener
Affiliation:
Institute for Application Techniques in Plant Protection, Julius Kühn-Institute, Messeweg 11/12, 38104 Braunschweig, Germany
D. von Hörsten
Affiliation:
Institute for Application Techniques in Plant Protection, Julius Kühn-Institute, Messeweg 11/12, 38104 Braunschweig, Germany
T.-F. Minßen
Affiliation:
Institute of Mobile Machines and Commercial Vehicles, Technische Universität Braunschweig, Langer Kamp 19a, 38106Germany
C.-C. Gaus
Affiliation:
Institute of Farm Economics, Thünen Institute, Bundesallee 50, 38116 Braunschweig, Germany
*
Get access

Abstract

A view into future requires maybe a new approach of current arable production systems. So far crop production systems have been adapted to the machinery available on the market. New technological progresses in the range of precision and digital farming show the possibilities meeting the requirements of plants even more small-spatial and efficiently. Especially small autonomous machinery may offer opportunities achieving sustainable intensification in crop farming. Different crop productions and cultivation systems have to be devised, analyzed and assessed in this context.

Type
PA in practice
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backhaus, GF, Broers, L, Kögel-Knabner, I, Schwerin, M and Thrän, D (Bioökonomierat), 2014. Nachhaltige Bereitstellung von biobasierten agrarischen Rohstoffen. (Sustainable provision of biobased agrarian raw material). http://biooekonomierat.de/fileadmin/Publikationen/berichte/030714_RUN_Nachhaltige_Bereitstellung.pdf. (Retrieved 26/10/2016)Google Scholar
Balmann, A and Schaft, F 2008. Zukünftige ökonomische Herausforderungen der Agrarproduktion: Strukturwandel vor dem Hintergrund sich ändernder Märkte, Politiken und Technologien. (Economic challenges of agricultural production in the future: structural change against the background of changing markets, policies and technologies). Arch. Tierz., Dummerstorf 51. Sonderheft, 13–24.Google Scholar
Claas 2016. Example for plant communities in Spot Farming taking into consideration small specific differences. Amended after the submission of Claas. http://www.claas.de/ produkte /easy/ precision-farming/crop-sensor-isaria/map-overlay.Google Scholar
Demmel, M, Hahnenkamm, O, Kormann, G and Peterreins, M 2000. Gleichstandsaat bei Silomais. Ergebnisse aus zwei Versuchsjahren. (Narrow row equal space planting of silage maize. Results of two trials). Landtechnik 55, 210211.Google Scholar
EU-Commission (The Commission of the European Communities) 2002. Bericht der Kommission. Durchführung der Richtlinie 91/676/EWG des Rates zum Schutz der Gewässer vor Verunreinigung durch Nitrat aus landwirtschaftlichen Quellen. Zusammenfassung der Berichte der Mitgliedstaaten für das Jahr 2000. (Report of the commission. Implementation of the directive 91/676/EWG of the council concerning the protection of waters against pollution caused by nitrogen from agricultural sources. Summary of reports by member states in 2000). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52 002DC0407. (retrieved 26/10/2016).Google Scholar
EU-Commission (The Commission of the European Communities) 2014. Communication from the Commission to the European Parliament, the Council, the European economic and social Committee and the Committee of the regions (2014) (On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative).Google Scholar
Götz, S and Bernhardt, H 2008. Produktionsvergleich von Gleichstandsaat und Normalsaat bei Silomais. (Comparison of production of silage maize with narrow row equal space planting and regular drilling). Landtechnik 2.2010, 107–110.Google Scholar
Griepentrog, H-W 1999. Zur Bewertung der Flächenverteilung von Saatgut. (Evaluation of distribution of seeds). Landtechnik 54, 7879.Google Scholar
Haenel, H-D, Rösemann, C, Dämmgen, U, Freibauer, A, Döring, U, Wulf, S, Eurich-Menden, B, Döhler, H, Schreiner, C and Osterburg, B 2016. Calculations of gaseous and particulate emissions from German agriculture 1990–2014: report on methods and data (RMD) submission 2016. Braunschweig: Johann Heinrich von Thünen-Institut, 409 p, Thünen Rep 39, DOI: 10.3220/REP1457617297000.Google Scholar
IPCC 2011. IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Taube, F, Balmann, A, Bauhus, J, Birner, R, Bokelmann, W, Christen, O, Gauly, M, Grethe, H, Holm-Müller, K, Horst, W, Knierim, U, Latacz-Lohmann, U, Nieberg, H, Qaim, M, Spiller, A, Täuber, S, Weingarten, P and Wiesler, F 2003. Novellierung der Düngeverordnung: Nährstoffüberschüsse wirksam begrenzen. Berichte über die Landwirtschaft. (The amendment of Fertiliser Ordinance: effectively limiting of nutrient surplus.) Zeitschrift für Agrarpolitik und Landwirtschaft. Sonderheft 219. ISSN: 2196–5099.Google Scholar