Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T15:21:18.901Z Has data issue: false hasContentIssue false

Stochastic finite element methods for partial differential equations with random input data*

Published online by Cambridge University Press:  12 May 2014

Max D. Gunzburger
Affiliation:
Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, USA, E-mail: [email protected], https://www.sc.fsu.edu/~gunzburg
Clayton G. Webster
Affiliation:
Department ofComputational and Applied Mathematics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, E-mail: [email protected], http://www.csm.ornl.gov/~cgwebster
Guannan Zhang
Affiliation:
Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, E-mail: [email protected], http://www.csm.ornl.gov/~gz3

Abstract

The quantification of probabilistic uncertainties in the outputs of physical, biological, and social systems governed by partial differential equations with random inputs require, in practice, the discretization of those equations. Stochastic finite element methods refer to an extensive class of algorithms for the approximate solution of partial differential equations having random input data, for which spatial discretization is effected by a finite element method. Fully discrete approximations require further discretization with respect to solution dependences on the random variables. For this purpose several approaches have been developed, including intrusive approaches such as stochastic Galerkin methods, for which the physical and probabilistic degrees of freedom are coupled, and non-intrusive approaches such as stochastic sampling and interpolatory-type stochastic collocation methods, for which the physical and probabilistic degrees of freedom are uncoupled. All these method classes are surveyed in this article, including some novel recent developments. Details about the construction of the various algorithms and about theoretical error estimates and complexity analyses of the algorithms are provided. Throughout, numerical examples are used to illustrate the theoretical results and to provide further insights into the methodologies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Colour online for monochrome figures available at journals.cambridge.org/anu.

References

REFERENCES

Acharjee, S. and Zabaras, N. (2007), ‘A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes’, Comput. Struct. 85, 244254.Google Scholar
Agarwal, N. and Aluru, N. R. (2009), ‘A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties’, J. Comput. Phys. 228, 7662.Google Scholar
Ainsworth, M. and Oden, J.-T. (2000), A Posteriori Error Estimation in Finite Element Analysis, Wiley.Google Scholar
Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux, M., Hovland, P., Ng, E., Webster, C., and Wild, S. (2013), Applied mathematics research for exascale computing. Technical report, US Department of Energy.Google Scholar
Askey, R. and Wilson, J. A. (1985), Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, Vol. 319 of Memoirs of the American Mathematical Society, AMS.Google Scholar
Babuška, I. M. and Chatzipantelidis, P. (2002), ‘On solving elliptic stochastic partial differential equations’, Comput. Methods Appl. Mech. Engrg 191, 40934122.Google Scholar
Babuška, I. M. and Chleboun, J. (2002), ‘Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions’, Math. Comp. 71, 13391370.Google Scholar
Babuška, I. M. and Chleboun, J. (2003), ‘Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems’, Numer. Math. 93, 583610.Google Scholar
Babuška, I. M. and Oden, J. T. (2006), ‘The reliability of computer predictions: Can they be trusted?’, Internat. J. Numer. Anal. Model. 3, 255272.Google Scholar
Babuška, I. M. and Strouboulis, T. (2001), The Finite Element Method and its Reliability, Numerical Mathematics and Scientific Computation, Oxford Science Publications.CrossRefGoogle Scholar
Babuška, I. M., Liu, K. M. and Tempone, R. (2003), ‘Solving stochastic partial differential equations based on the experimental data’, Math. Models Methods Appl. Sci. 13, 415444.Google Scholar
Babuška, I. M., Nobile, F. and Tempone, R. (2005 a), ‘Worst-case scenario analysis for elliptic problems with uncertainty’, Numer. Math. 101, 185219.Google Scholar
Babuška, I. M., Nobile, F. and Tempone, R. (2007 a), ‘A stochastic collocation method for elliptic partial differential equations with random input data’, SIAM J. Numer. Anal. 45, 10051034.Google Scholar
Babuska, I., Nobile, F. and Tempone, R. (2007 b), ‘Reliability of computational science’, Numer. Methods Partial Diff. Equations 23, 753784.Google Scholar
Babuška, I. M., Nobile, F. and Tempone, R. (2008), ‘A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria’, Comput. Methods Appl. Mech. Engrg 197, 25172539.Google Scholar
Babuška, I. M., Tempone, R. and Zouraris, G. E. (2004), ‘Galerkin finite element approximations of stochastic elliptic partial differential equations’, SIAM J. Numer. Anal. 42, 800825.CrossRefGoogle Scholar
Babuška, I. M., Tempone, R. and Zouraris, G. E. (2005b), ‘Solving elliptic boundary value problems with uncertain coefficients by the finite element method: The stochastic formulation’, Comput. Methods Appl. Mech. Engrg 194, 12511294.Google Scholar
Barth, A. and Lang, A. (2012), ‘Multilevel Monte Carlo method with applications to stochastic partial differential equations’, Internat. J. Comput. Math. 89, 24792498.CrossRefGoogle Scholar
Barth, A., Lang, A. and Schwab, C. (2013), ‘Multilevel Monte Carlo method for parabolic stochastic partial differential equations’, BIT Numer. Math. 53, 327.Google Scholar
Barth, A., Schwab, C. and Zollinger, N. (2011), ‘Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients’, Numer. Math. 119, 123161.Google Scholar
Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C. H. and Tu, J. (2007), ‘A framework for validation of computer models’, Technometrics 49, 138154.CrossRefGoogle Scholar
Beck, J. L. and Au, S. K. (2002), ‘Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation’, J. Engrg Mech. 128, 380391.Google Scholar
Beck, J., Nobile, F., Tamellini, L. and Tempone, R. (2011), Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison. In Spectral and High Order Methods for Partial Differential Equations, Vol. 76 of Lecture Notes in Computational Science and Engineering, Springer, pp. 4362.CrossRefGoogle Scholar
Beck, J., Nobile, F., Tamellini, L. and Tempone, R. (2014), ‘Convergence of quasioptimal stochastic Galerkin methods for a class of PDEs with random coefficients’, Comput. Math. Appl. 67, 732751.Google Scholar
Beck, J., Tempone, R. and Nobile, F. (2012), ‘On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods’, Math. Models Methods Appl. Sci. 22, 1250023.Google Scholar
Ben-Haim, Y. (1996), Robust Reliability in the Mechanical Sciences, Springe.Google Scholar
Benth, r. F. E. and Gjerde, J. (1998 a), ‘Convergence rates for finite element approximations of stochastic partial differential equations’, Stochastics Stochastic Rep. 63, 313326.Google Scholar
Benth, F. E. and Gjerde, J. (1998 b), Numerical solution of the pressure equation for fluid flow in a stochastic medium. In Stochastic Analysis and Related Topics VI: Geilo, 1996, Vol. 42 of Progress in Probability, Birkhäuser, pp. 175186.Google Scholar
Bernardini, A. (1999), What are the random fuzzy sets and how to use them for uncertainty modelling in engineering systems? In Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization (Elishakoff, I., ed.), Vol. 388 of CISM Course and Lectures, Springer, pp. 63125.Google Scholar
Box, G. E. P. (1973), Bayesian Inference in Statistical Analysis, Wiley.Google Scholar
Braack, M. and Ern, A. (2003), ‘A posteriori control of modeling errors and discretization errors’, Multiscale Model. Simul. 1, 221238.Google Scholar
Breidt, J., Butler, T. and Estep, D. (2011), ‘A measure-theoretic computational method for inverse sensitivity problems I: Method and analysis’, SIAM J. Numer. Anal. 49, 18361859.Google Scholar
Brenner, S. C. and Scott, L. R. (2008), The Mathematical Theory ofFinite Element Methods, Springer.Google Scholar
Bungartz, H.-J. and Griebel, M. (2004), Sparse grids. In Acta Numerica, Vol. 13, Cambridge University Press, pp. 1123.Google Scholar
Burkardt, J., Gunzburger, M. and Lee, H.-C. (2006 a), ‘Centroidal Voronoi tessellation-based reduced-order modeling of complex systems’, SIAM J. Sci. Comput. 28, 459484.Google Scholar
Burkardt, J., Gunzburger, M. and Lee, H.-C. (2006b), ‘POD and CVT-based reduced-order modeling of Navier-Stokes flows’, Comp. Meth. Appl. Mech. Engrg 196, 337355.Google Scholar
Burkardt, J., Gunzburger, M. and Webster, C. G. (2007), ‘Reduced order modeling of some nonlinear stochastic partial differential equations’, Internat. J. Numer. Anal. Model. 4, 368391.Google Scholar
Chang, C.-J. and Joseph, V. (2013), ‘Model calibration through minimal adjustments', Technometrics, published online.Google Scholar
Charrier, J., Scheichl, R. and Teckentrup, A. (2013), ‘Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods’, SIAM J. Numer. Anal. 51, 322352.Google Scholar
Cheung, S. H. and Beck, J. L. (2010), Comparison of different model classes for Bayesian updating and robust predictions using stochastic state-space system models. In Safety, Reliability and Risk ofStructures, Infrastructures and Engineering Systems, CRC Press, pp. 18.Google Scholar
Cheung, S. H., Oliver, T. A., Prudencio, E. E., Prudhomme, S. and Moser, R. D. (2011), ‘Bayesian uncertainty analysis with applications to turbulence modeling’, Reliab. Engrg System Safety 96, 11371149.Google Scholar
Ching, J. and Beck, J. L. (2004), ‘Bayesian analysis of the phase II IASC-ASCE structural health monitoring experimental benchmark data’, J. Engrg Mech. 130, 12331244.Google Scholar
Ciarlet, P. G. (1978), The Finite Element Method for Elliptic Problems, North-Holland.Google Scholar
Clenshaw, C. W. and Curtis, A. R. (1960), ‘A method for numerical integration on an automatic computer’, Numer. Math. 2, 197205.Google Scholar
Cliffe, K. A., Giles, M. B., Scheichl, R. and Teckentrup, A. L. (2011), ‘Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients’, Computing and Visualization in Science 14, 315.Google Scholar
Cohen, A., DeVore, R. and Schwab, C. (2011), ‘Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's’, Anal. Appl. 9, 1147.Google Scholar
Cullen, A. C. and Frey, H. C. (1999), Probabilistic Techniques Exposure Assessment, Plenum.Google Scholar
Dauge, M. and Stevenson, R. (2010), ‘Sparse tensor product wavelet approximation of singular functions’, SIAM J. Math. Anal. 42, 22032228.CrossRefGoogle Scholar
Deb, M.-K. (2000), Solution of stochastic partial differential equations (SPDEs) using Galerkin method: Theory and applications. PhD thesis, The University of Texas at Austin.Google Scholar
Deb, M. K., Babuška, I. M. and Oden, J. T. (2001), ‘Solution of stochastic partial differential equations using Galerkin finite element techniques’, Comput. Methods Appl. Mech. Engrg 190, 63596372.Google Scholar
Desceliers, C., Ghanem, R. and Soize, C. (2005), ‘Polynomial chaos representation ofv a stochastic preconditioner’, Internat. J. Numer. Methods Engrg 64, 618634.Google Scholar
DeVore, R. A. and Lorentz, G. G. (1993), Constructive Approximation, Vol. 303 of Grundlehren der Mathematischen Wissenschaften, Springer.Google Scholar
Doostan, A. and Iaccarino, G. (2009), ‘A least-squares approximation of partial differential equations with high-dimensional random inputs’, J. Comput. Phys. 228, 43324345.Google Scholar
Doostan, A. and Owhadi, H. (2011), ‘A non-adapted sparse approximation of PDEs with stochastic inputs’, J. Comput. Phys. 230, 30153034.Google Scholar
Doostan, A., Ghanem, R. and Red-Horse, J. (2007), ‘Stochastic model reduction for chaos representations’, Comput. Methods Appl. Mech. Engrg 196, 39513966.Google Scholar
Du, Q. and Gunzburger, M. (2002 a), ‘Grid generation and optimization based on centroidal Voronoi tessellations’, Appl. Math. Comput. 133, 591607.Google Scholar
Du, Q. and Gunzburger, M. (2002b), Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation. In Proc. FEDSM'02, ASME.Google Scholar
Du, Q. and Gunzburger, M. (2003), Centroidal Voronoi tessellation based proper orthogonal decomposition analysis. In Control and Estimation of Distributed Parameter Systems (Desch, W.et al., eds), Birkhäuser.Google Scholar
Du, Q., Faber, V. and Gunzburger, M. (1999), ‘Centroidal Voronoi tessellations: Applications and algorithms’, SIAM Review 41, 637676.Google Scholar
Du, Q., Gunzburger, M. and Ju, L. (2002), ‘Probabilistic algorithms for centroidal Voronoi tessellations and their parallel implementation’, Parallel Comput. 28, 14771500.Google Scholar
Du, Q., Gunzburger, M. and Ju, L. (2003a), ‘Constrained centroidal Voronoi tessellations for surfaces’, SIAM J. Sci. Comput. 24, 14881506.Google Scholar
Du, Q., Gunzburger, M. and Ju, L. (2003 b), ‘Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere’, Comput. Methods Appl. Mech. Engrg 192, 39333957.Google Scholar
Du, Q., Gunzburger, M. and Ju, L. (2010), ‘Advances in studies and applications of centroidal Voronoi tessellations’, Numer. Math. Theor. Meth. Appl. 3, 119142.Google Scholar
Du, Q., Gunzburger, M., Ju, L. and Wang, X. (2006), ‘Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration’, J. Math. Imag. Vision 24, 177194.Google Scholar
Dubois, D. and Prade, H., eds (2000), Fundamentals of Fuzzy Sets, Vol. 7 of Handbooks of Fuzzy Sets, Kluwer.Google Scholar
Dzjadyk, V. K. and Ivanov, V. V. (1983), ‘On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points’, Analysis Mathematica 9, 8597.Google Scholar
Eiermann, M., Ernst, O. G. and Ullmann, E. (2007), ‘Computational aspects of the stochastic finite element method’, Computing and Visualization in Science 10, 315.Google Scholar
Eldred, M., Webster, C. G. and Constantine, P. G. (2008), Evaluation of nonintrusive approaches for Wiener–Askey generalized polynomial chaos. AIAA paper 1892.Google Scholar
Elishakoff, I. and Ren, Y. (2003), Finite Element Methods for Structures With Large Variations, Oxford University Press.Google Scholar
Elishakoff, I., ed. (1999), Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization, Vol. 388 of CISM Course and Lectures, Springer.Google Scholar
Elman, H. and Miller, C. (2011), Stochastic collocation with kernel density estimation. Technical report, Department of Computer Science, University of Maryland.Google Scholar
Elman, H. C., Ernst, O. G. and O'Leary, D. P. (2001), ‘A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations’, SIAM J. Sci. Comput. 23, 12911315.Google Scholar
Elman, H. C., Miller, C. W., Phipps, E. T. and Tuminaro, R. S. (2011), ‘Assessment of collocation and Galerkin approaches to linear diffusion equations with random data’, Internat. J. Uncertainty Quantification 1, 1933.Google Scholar
Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. (1995), Introduction to computational methods for differential equations. In Theory and Numerics of Ordinary and Partial Differential Equations, Vol.IV of Advances in Numerical Analysis, Oxford University Press, pp. 77122.Google Scholar
Theory and Numerics of Ordinary and Partial Differential Equations (Advances in Numerical Analysis Vol. 4) by Ainsworth, M. and Marletta, M. (20 07 1995)Google Scholar
Ernst, O. G. and Ullmann, E. (2010), ‘Stochastic Galerkin matrices’, SIAM Matrix J. Anal. Appl. 31, 18481872.Google Scholar
Ernst, O. G., Powell, C. E., Silvester, D. J. and Ullmann, E. (2009), ‘Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data’, SIAM J. Sci. Comput. 31, 14241447.Google Scholar
Ferson, S., Kreinovich, V., Ginzburg, L., Mayers, D. and Sentz, K. (2003), Constructing probability boxed and Demster–Shafer structures. Sandia Report SAND 2002-4015, Sandia National Laboratories.Google Scholar
Fichtl, E. D., Prinja, A. K. and Warsa, J. S. (2009), Stochastic methods for uncertainty quantification in radiation transport. In International Conference on Mathematics, Computational Methods and Reactor Physics.Google Scholar
Fishman, G. (1996), Monte Carlo: Concepts, Algorithms, and Applications, Springer Series in Operations Research and Financial Engineering, Springer.Google Scholar
Foo, J. and Karniadakis, G. E. (2010), ‘Multi-element probabilistic collocation method in high dimensions’, J. Comput. Phys. 229, 15361557.Google Scholar
Foo, J., Wan, X. and Karniadakis, G. (2008), ‘The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications’, J. Comput. Phys. 227, 95729595.Google Scholar
Frauenfelder, P., Schwab, C. and Todor, R. A. (2005), ‘Finite elements for elliptic problems with stochastic coefficients’, Comput. Methods Appl. Mech. Engrg 194, 205228.Google Scholar
Ganapathysubramanian, B. and Zabaras, N. (2007), ‘Sparse grid collocation schemes for stochastic natural convection problems’, J. Comput. Phys. 225, 652685.Google Scholar
Gaudagnini, A. and Neumann, S. (1999), ‘Nonlocal and localized analysis of conditional mean steady state flow in bounded, randomly nonuniform domains. Part 1: Theory and computational approach. Part 2: Computational examples’, Water Resour. Res. 35, 29993039.Google Scholar
Gautschi, W. (2004), Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, Oxford Science Publications.Google Scholar
Gerstner, T. and Griebel, M. (1998), ‘Numerical integration using sparse grids’, Numer. Algorithms 18, 209232.Google Scholar
Gerstner, T. and Griebel, M. (2003), ‘Dimension-adaptive tensor-product quadrature’, Computing 71, 6587.Google Scholar
Ghanem, R. (1999), ‘Ingredients for a general purpose stochastic finite elements implementation’, Comput. Methods Appl. Mech. Engrg 168, 1934.Google Scholar
Ghanem, R. and Red-Horse, J. (1999), ‘Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach’, Physica D 133, 137144.Google Scholar
Ghanem, R. and Spanos, P. D. (2003), Stochastic Finite Elements: A Spectral Approach, revised edition, Dover.Google Scholar
Ghanem, R. G. and Kruger, R. M. (1996), ‘Numerical solution of spectral stochastic finite element systems’, Comput. Methods Appl. Mech. Engrg 129, 289303.Google Scholar
Ghanem, R. G. and Spanos, P. D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer.Google Scholar
Giles, M. B. (2008), ‘Multilevel Monte Carlo path simulation’, Operations Research 56, 607617.Google Scholar
Glimm, J., Hou, S., Lee, Y.-H., Sharp, D. H. and Ye, K. (2003), Solution error models for uncertainty quantification. In Advances in Differential Equations and Mathematical Physics: Birmingham, AL, 2002, Vol. 327 of Contemporary Mathematics, AMS, pp. 115140.Google Scholar
Gordon, A. and Powell, C. (2012), ‘On solving stochastic collocation systems with algebraic multigrid’, IMA J. Numer. Anal. 32, 10511070.Google Scholar
Griebel, M. (1998), ‘Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences’, Computing 61, 151179.Google Scholar
Grigoriu, M. (2002), Stochastic Calculus: Applications in Science and Engineering, Birkhäuser.Google Scholar
Grisvard, P. (1985), Elliptic Problems in Non-Smooth Domains, Pitman.Google Scholar
Gunzburger, M. and Labovsky, A. (2011), ‘Effects of approximate deconvolution models on the solution of the stochastic Navier-Stokes equations’, J. Comput. Math. 29, 131140.Google Scholar
Gunzburger, M., Jantsch, P., Teckentrup, A. and Webster, C. G. (2014), ‘A multilevel stochastic collocation method for partial differential equations with random input data’, SIAM J. Uncertainty Quantification, submitted.Google Scholar
Gunzburger, M., Trenchea, C. and Webster, C. G. (2013), ‘A generalized stochastic collocation approach to constrained optimization for random data identification problems’, Numerical Methods for PDEs, submitted.Google Scholar
Gunzburger, M., Webster, C. G. and Zhang, G. (2014), An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations with random input data. In Sparse Grids and Applications: Munich 2012, Vol. 97 of Lecture Notes in Computational Science and Engineering, Springer, pp. 137170.Google Scholar
Hammersley, J. and Handscomb, D. (1964), Monte Carlo Methods, Halsted.Google Scholar
Hardin, R. and Sloane, N. (1993), ‘A new approach to the construction of optimal designs’, J. Statist. Planning Inference 57, 339369.Google Scholar
Helton, J. C. (1997), ‘Analysis in the presence of stochastic and subjective uncertainties’, J. Statist. Comput. Simulation 57, 376.Google Scholar
Helton, J. C. and Davis, F. J. (2003), ‘Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems’, Reliab. Engrg System Safety 8l, 2369.Google Scholar
Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A. and Ryne, R. D. (2004), ‘Combining field data and computer simulations for calibration and prediction’, SIAM J. Sci. Comput. 26, 448466.Google Scholar
Hlaváček, J., Chleboun, I. and Babuška, I. M. (2004), Uncertain Input Data Problems and the Worst Scenario Method, Elsevier.Google Scholar
Hosder, S. and Walters, R. W. (2007), A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In 44th AIAA Aerospace Sciences Meeting.Google Scholar
Jacobsen, D., Gunzburger, M., Ringler, T., Burkardt, J. and Peterson, J. (2013), ‘Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations’, Geo. Mod. Develop. 6, 14271466.Google Scholar
Jakeman, J. D., Archibald, R. and Xiu, D. (2011), ‘Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids’, J. Comput. Phys. 230, 39773997.Google Scholar
Jantsch, P., Webster, C. and Zhang, G. (2014), A hierarchical stochastic collocation method for adaptive acceleration of PDEs with random input data. ORNL Technical Report.Google Scholar
Jin, C., Cai, X. and Li, C. (2007), ‘Parallel domain decomposition methods for stochastic elliptic equations’, SIAM J. Sci. Comput. 29, 20962114.Google Scholar
Johnson, C. (2000), Adaptive computational methods for differential equations. In ICIAM 99: Edinburgh, Oxford University Press, pp. 96104.Google Scholar
Joseph, V. R. (2013), ‘A note on nonnegative DoIt approximation’, Technometrics 55, 103107.Google Scholar
Joseph, V. R. and Melkote, S. N. (2009), ‘Statistical adjustments to engineering models’, J. Quality Technology 4l, 362375.Google Scholar
Jouini, E., Cvitanić, J. and Musiela, M., eds (2001), Option Pricing, Interest Rates and Risk Management, Cambridge University Press.Google Scholar
Ju, L., Gunzburger, M. and Zhao, W. (2006), ‘Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi–Delaunay triangulations’, SIAM J. Sci. Comput. 28, 20232053.CrossRefGoogle Scholar
Kahn, H. and Marshall, A. (1953), ‘Methods of reducing sample size in Monte Carlo computations’, J. Oper. Res. Soc. Amer. 1, 263271.Google Scholar
Karniadakis, G., Su, C.-H., Xiu, D., Lucor, D., Schwab, C. and Todor, R. (2005), Generalized polynomial chaos solution for diferential equations with random inputs. SAM Report 2005-01, ETH Zürich.Google Scholar
Keese, A. and Matthies, H. G. (2005), ‘Hierarchical parallelisation for the solution of stochastic finite element equations’, Comput. Struct. 83, 10331047.Google Scholar
Kennedy, M. C. and O'Hagan, A. (2001), ‘Bayesian calibration of computer models’ (with discussion), J. Royal Statist. Soc. B 63, 425464.Google Scholar
Ketelsen, C., Scheichl, R. and Teckentrup, A. L. (2013), A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. arXiv:1303.7343Google Scholar
Kleiber, M. and Hien, T.-D. (1992), The Stochastic Finite Element Method, Wiley.Google Scholar
Klimke, A. and Wohlmuth, B. (2005), ‘Algorithm 847: Spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB’, ACM Trans. Math. Software 31, 561579.Google Scholar
Kramosil, I. (2001), Probabilistic Analysis of Belief Functions, Kluwer.Google Scholar
Maître, O. P. Le and Knio, O. M. (2010), Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Springer.Google Scholar
Maître, O. P. Le, Knio, O. M., Najm, H. N. and Ghanem, R. G. (2004 a), ‘Uncertainty propagation using Wiener-Haar expansions’, J. Comput. Phys. 197, 2857.Google Scholar
Maître, O. P. Le, Najm, H. N., Ghanem, R. G. and Knio, O. M. (2004b), ‘Multiresolution analysis of Wiener-type uncertainty propagation schemes’, J. Comput. Phys. 197, 502531.Google Scholar
Lemm, J. C. (2003), Bayesian Field Theory, Johns Hopkins University Press.Google Scholar
Li, C. F., Feng, Y. T., Owen, D. R. J., Li, D. F. and Davis, I. M. (2007), ‘A Fourier–Karhunen–Loeve discretization scheme for stationary random material properties in SFEM’, Internat. J. Numer. Methods Engrg. 73, 19421965.Google Scholar
Lin, G., Tartakovsky, A. M. and Tartakovsky, D. M. (2010), ‘Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids’, J. Comput. Phys. 229, 69957012.CrossRefGoogle Scholar
Loève, M. (1977), Probability Theory I, fourth edition, Vol. 45 of Graduate Texts in Mathematics, Springer.Google Scholar
Loève, M. (1978), Probability Theory II, fourth edition, Vol. 46 of Graduate Texts in Mathematics, Springer.Google Scholar
Lu, Z. and Zhang, D. (2004), ‘A comparative study on uncertainty quantification for flow in randomly heterogeneous media using Monte Carlo simulations and conventional and KL-based moment-equation approaches’, SIAM J. Sci. Comput. 26, 558577.Google Scholar
Lucor, D. and Karniadakis, G. E. (2004), ‘Predictability and uncertainty in flowstructure interactions’, Eur. J. Mech. B Fluids 23, 4149.Google Scholar
Lucor, D., Meyers, J. and Sagaut, P. (2007), ‘Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos’, J. Fluid Mech. 585, 255279.Google Scholar
Lucor, D., Xiu, D., Su, C.-H. and Karniadakis, G. E. (2003), ‘Predictability and uncertainty in CFD’, Internat. J. Numer. Methods Fluids 43, 483505.Google Scholar
Ma, X. and Zabaras, N. (2009), ‘An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic diferential equations’, J. Comput. Phys. 228, 30843113.Google Scholar
Ma, X. and Zabaras, N. (2010), ‘An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial diferential equations’, J. Comput. Phys. 229, 38843915.Google Scholar
Marzouk, Y. and Xiu, D. (2009), ‘A stochastic collocation approach to Bayesian inference in inverse problems’, Commun. Comput. Phys. 6, 826847.Google Scholar
Marzouk, Y. M., Najm, H. N. and Rahn, L. A. (2007), ‘Stochastic spectral methods for efficient Bayesian solution of inverse problems’, J. Comput. Phys. 224, 560586.Google Scholar
Mathelin, L. and Gallivan, K. (2010), ‘A compressed sensing approach for partial diferential equations with random input data’, Comput. Methods Appl. Mech. Engrg, submitted.Google Scholar
Mathelin, L., Hussaini, M. Y. and Zang, T. A. (2005), ‘Stochastic approaches to uncertainty quantification in CFD simulations’, Numer. Algorithms 38, 209236.Google Scholar
Matthies, H. G. and Keese, A. (2005), ‘Galerkin methods for linear and nonlinear elliptic stochastic partial diferential equations’, Comput. Methods Appl. Mech. Engrg 194, 12951331.Google Scholar
Melchers, R. E. (1999), Structural Reliability, Analysis and Prediction, Wiley.Google Scholar
G. Migliorati, Nobile, F., Schwerin, E. Von and Tempone, R. (2013), ‘Approximation of quantities of interest in stochastic PDEs by the random discrete L 2 projection on polynomial spaces', SIAM J. Sci. Comput. 35, A1440A1460.Google Scholar
Moon, K.-S., von Schwerin, E., Szepessy, A. and Tempone, R. (2006), An adaptive algorithm for ordinary, stochastic and partial diferential equations. In Recent Advances in Adaptive Computation, Vol. 381 of Contemporary Mathematics, AMS, pp. 369388.Google Scholar
Mrczyk, J., ed. (1997), Computational Mechanics in a Meta Computing Perspective, Center for Numerical Methods in Engineering, Barcelona.Google Scholar
Muto, M. and Beck, J. L. (2008), ‘Bayesian updating and model class selection for hysteretic structural models using stochastic simulation’, J. Vibration Control 14, 734.Google Scholar
Narayanan, V. A. B. and Zabaras, N. (2004), ‘Stochastic inverse heat conduction using a spectral approach',’ Internat. J. Numer. Methods Engrg 60, 15691593.Google Scholar
Narayanan, V. A. B. and Zabaras, N. (2005 a), ‘Variational multiscale stabilized FEM formulations for transport equations: Stochastic advection-difusion and incompressible stochastic Navier-Stokes equations’, J. Comput. Phys. 202, 94133.Google Scholar
Narayanan, V. A. B. and Zabaras, N. (2005 b), ‘Using stochastic analysis to capture unstable equilibrium in natural convection’, J. Comput. Phys. 208, 134153.Google Scholar
Nguyen, H., Burkardt, J., Gunzburger, M., Ju, L. and Saka, Y. (2009), ‘Constrained CVT meshes and a comparison of triangular mesh generators’, Comp. Geom. Theo. Appl. 42, 119.Google Scholar
Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, Vol. 63 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.Google Scholar
Nobile, F. and Tempone, R. (2009), ‘Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients’, Internat. J. Numer. MethodsEngrg 80, 9791006.Google Scholar
Nobile, F., Tempone, R. and Webster, C. G. (2007), The analysis of a sparse grid stochastic collocation method for partial differential equations with high-dimensional random input data. Technical Report SAND2007-8093, Sandia National Laboratories.Google Scholar
Nobile, F., Tempone, R. and Webster, C. G. (2008 a), ‘A sparse grid stochastic collocation method for partial differential equations with random input data’, SIAM J. Numer. Anal. 46, 23092345.Google Scholar
Nobile, F., Tempone, R. and Webster, C. G. (2008 b), ‘An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data’, SIAM J. Numer. Anal. 46, 24112442.Google Scholar
Novak, E. (1988), ‘Stochastic properties of quadrature formulas’, Numer. Math. 53, 609620.Google Scholar
Oberkampf, W. L., Helton, J. C. and Sentz, K. (2001), Mathematical representation of uncertainty. AIAA paper 2001-1645.Google Scholar
Oden, J. T. and Prudhomme, S. (2002), ‘Estimation of modeling error in computational mechanics’, J. Comput. Phys. 182, 496515.Google Scholar
Oden, J. T. and Vemaganti, K. S. (2000), ‘Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials I: Error estimates and adaptive algorithms’, J. Comput. Phys. 164, 2247.Google Scholar
Oden, J. T., Babuška, I. M., Nobile, F., Feng, Y. and Tempone, R. (2005 a), ‘Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty’, Comput. Methods Appl. Mech. Engrg 194, 195204.Google Scholar
Oden, J. T., Belytschko, T., Babuska, I. and Hughes, T. J. R. (2003), ‘Research directions in computational mechanics’, Comput. Methods Appl. Mech. Engrg 192, 913922.CrossRefGoogle Scholar
Oden, J. T., Prudhomme, S. and Bauman, P. (2005 b), ‘On the extension of goal-oriented error estimation and hierarchical modeling to discrete lattice models’, Comput. Methods Appl. Mech. Engrg 194, 36683688.Google Scholar
Oden, J. T., Prudhomme, S., Hammerand, D. C. and Kuczma, M. S. (2001), ‘Modeling error and adaptivity in nonlinear continuum mechanics’, Comput. Methods Appl. Mech. Engrg 190, 66636684.Google Scholar
Parks, M., De Sturler, E., Mackey, G., Johnson, D. and Maiti, S. (2006), ‘Recycling Krylov subspaces for sequences of linear systems’, SIAM J. Sci. Comput. 28, 16511674.Google Scholar
Pellissetti, M. F. and Ghanem, R. G. (2000), ‘Iterative solution of systems of linear equations arising in the context of stochastic finite elements’, Adv. Engineering Software 31, 607616.Google Scholar
Phipps, E., Eldred, M., Salinger, A. and Webster, C. (2008), Capabilities for uncertainty in predictive science. Technical Report SAND2008-6527, Sandia National Laboratories.CrossRefGoogle Scholar
Pope, S. (1981), ‘Transport equation for the joint probability density function of velocity and scalars in turbulent flow’, Phys. Fluids 24, 588596.Google Scholar
Pope, S. (1982), ‘The application of PDF transport equations to turbulent reactive flows’, J. Non-Equil. Thermody. 7, 114.Google Scholar
Powell, C. E. and Elman, H. C. (2009), ‘Block-diagonal preconditioning for spectral stochastic finite-element systems’, IMA J. Numer. Anal. 29, 350375.Google Scholar
Powell, C. E. and Ullmann, E. (2010), ‘Preconditioning stochastic Galerkin saddle point systems’, SIAM J. Matrix Anal. Appl. 31, 28132840.Google Scholar
Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (2007), Numerical Recipes: The Art of Scientific Computing, Cambridge University Press.Google Scholar
Pukelsheim, F. (1993), Optimal Design of Experiments, SIAM.Google Scholar
Qian, Z. and Wu, C. F. J. (2008), ‘Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments’, Technometrics 50, 192204.Google Scholar
Qian, Z., Seepersad, C., Joseph, R., Allen, J. and Wu, C. F. J. (2006), ‘Building surrogate models based on detailed and approximate simulations’, ASME J. Mech. Design 128, 668677.Google Scholar
Rao, M. M. and Swift, R. J. (2006), Probability Theory with Applications, Vol. 582 of Mathematics and its Applications, second edition, Springer.Google Scholar
Reagana, M. T., Najm, H. N., Ghanem, R. G. and Knio, O. M. (2003), ‘Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection’, Combustion and Flame 132, 545555.Google Scholar
Regan, H. M., Ferson, S. and Berleant, D. (2004), ‘Equivalence of methods for uncertainty propagation of real-valued random variables’, Internat. J. Approx. Reason. 36, 130.Google Scholar
Reilly, J., Stone, P. H., Forest, C. E., Webster, M. D., Jacoby, H. D. and Prinn, R. G. (2001), ‘Uncertainty and climate change assessments’, Science 293, 430433.Google Scholar
Ringler, T., Ju, L. and Gunzburger, M. (2008), ‘A multi-resolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations’, Ocean Dyn. 58, 475498.Google Scholar
Ripley, B. (1987), Stochastic Simulation, Wiley.Google Scholar
Roman, L. and Sarkis, M. (2006), ‘Stochastic Galerkin method for elliptic SPDEs: A white noise approach’, Discrete Contin. Dyn. Syst. B 6, 941955.Google Scholar
Romero, V., Burkardt, J., Gunzburger, M. and Peterson, J. (2005), Initial evaluation of pure and Latinized centroidal Voronoi tessellation for non-uniform statistical sampling. In Sensitivity Analysis of Model Output, Los Alamos National Laboratory, pp. 380401.Google Scholar
Romero, V., Burkardt, J., Gunzburger, M., Peterson, J. and Krishnamurthy, K. (2003 a), Initial application and evaluation of a promising new sampling method for response surface generation: Centroidal Voronoi tessellations. In Proc. 44th AIAA/AME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 14881506. AIAA paper 2003-2008.Google Scholar
Romero, V., Gunzburger, M., Burkardt, J. and Peterson, J. (2003 b), Initial evaluation of centroidal Voronoi tessellation method for statistical sampling and function integration. In Fourth International Symposium on Uncertainty Modeling and Analysis, ISUMA, pp. 174183.Google Scholar
Romero, V., Gunzburger, M., Burkardt, J. and Peterson, J. (2006), ‘Comparison of pure and “Latinized” centroidal Voronoi tessellation against other statistical sampling methods’, Reliab. Engrg System Safety 91, 12661280.Google Scholar
Romkes, A. and Oden, J. T. (2004), ‘Adaptive modeling of wave propagation in heterogeneous elastic solids’, Comput. Methods Appl. Mech. Engrg 193, 539559.Google Scholar
Rubinstein, R. (1981), Simulation and the Monte Carlo Method, Wiley.Google Scholar
Rubinstein, R. and Choudhari, M. (2005), ‘Uncertainty quantification for systems with random initial conditions using Wiener-Hermite expansions’, Stud. Appl. Math. 114, 167188.Google Scholar
Rudin, W. (1987), Real and Complex Analysis, third edition, McGraw-Hill.Google Scholar
Saka, Y., Gunzburger, M. and Burkardt, J. (2007), ‘Latinized, improved LHS, and CVT point sets in hypercubes’, Internat. J. Numer. Anal. Model. 4, 729743.Google Scholar
Sauer, T. and Xu, Y. (1995), ‘On multivariate Lagrange interpolation’, Math. Comp. 64, 11471170.Google Scholar
Schwab, C. and Todor, R.-A. (2003a), ‘Sparse finite elements for elliptic problems with stochastic loading’, Numer. Math. 95, 707734.Google Scholar
Schwab, C. and Todor, R. A. (2003 b), ‘Sparse finite elements for stochastic elliptic problems: Higher order moments’, Computing 71, 4363.Google Scholar
Simoncini, V. and Szyld, D. B. (2007), ‘Recent computational developments in krylov subspace methods for linear systems’, Numer. Linear Algebra Appl. 14, 159.Google Scholar
Smith, P., Shafi, M. and Gao, H. (1997), ‘Quick simulation: A review of importance sampling techniques in communication systems’, IEEE J. Select. Areas Commun. 15, 597613.Google Scholar
Smolyak, S. (1963), ‘Quadrature and interpolation formulas for tensor products of certain classes of functions’, Dokl. Akad. Nauk SSSR 4, 240243 (English translation).Google Scholar
Soize, C. (2003), ‘Random matrix theory and non-parametric model of random uncertainties in vibration analysis’, J. Sound Vibration 263, 893916.Google Scholar
Soize, C. (2005), ‘Random matrix theory for modeling uncertainties in computational mechanics’, Comput. Methods Appl. Mech. Engrg 194, 13331366.Google Scholar
Soize, C. and Ghanem, R. (2004), ‘Physical systems with random uncertainties: Chaos representations with arbitrary probability measure’, SIAM J. Sci. Comput. 26, 395410.Google Scholar
Srinivasan, R. (2002), Importance sampling: Applications in Communications and Detection, Springer.Google Scholar
Stoyanov, M. and Webster, C. G. (2014), ‘A gradient-based sampling approach for stochastic dimension reduction for partial differential equations with random input data’, Internat. J. Uncertainty Quantification, to appear.Google Scholar
Sweldens, W. (1996), ‘The lifting scheme: A custom-design construction of biorthogonal wavelets’, Appl. Comput. Harmon. Anal. 3, 186200.Google Scholar
Sweldens, W. (1998), ‘The lifting scheme: A construction of second generation wavelets’, SIAM J. Math. Anal. 29, 511546.Google Scholar
Tartakovsky, D. M. and Broyda, S. (2011), ‘PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties’, J. Contaminant Hydrology 120/121, 129140.Google Scholar
Tatang, M. (1995), Direct incorporation of uncertainty in chemical and environmental engineering systems. PhD thesis, MIT.Google Scholar
Taylor, J. C. (1997), An Introduction to Measure and Probability, Springer.Google Scholar
Todor, R. A. (2005), Sparse perturbation algorithms for elliptic PDE's with stochastic data. Dissertation 16192, ETH Zürich.Google Scholar
Tran, H., Trenchea, C. and Webster, C. G. (2012), ‘Convergence analysis of global stochastic collocation methods for Navier-Stokes with random input data. Technical Report ORNL/TM-2014/000, Oak Ridge National Laboratory. Submitted to SIAM J. Uncertainty Quantification.Google Scholar
Traub, J. F. and Werschulz, A. G. (1998), Complexity and Information, Cambridge University Press.Google Scholar
Trefethen, L. N. (2008), ‘Is Gauss quadrature better than Clenshaw–Curtis?’, SIAM Review 50, 6787.Google Scholar
Tuo, R. and Wu, C. F. J. (2013), A theoretical framework for calibration in computer models: Parametrization, estimation and convergence properties. Technical report, Georgia Tech.Google Scholar
Ullmann, E. (2010), ‘A Kronecker product preconditioner for stochastic Galerkin finite element discretizations’, SIAM J. Sci. Comput. 32, 923946.Google Scholar
Ullmann, E., Elman, H. C. and Ernst, O. G. (2012), ‘Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems’, SIAM J. Sci. Comput. 34, A659A682.Google Scholar
Verfürth, R. (1996), A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner.Google Scholar
Vick, S. G. (2002), Degrees of Belief: Subjective Probability and Engineering Judgment, American Society of Civil Engineers.Google Scholar
Wan, X. and Karniadakis, G. E. (2009), ‘Solving elliptic problems with non-Gaussian spatially-dependent random coefficients’, Comput. Methods Appl. Mech. Engrg 198, 19851995.Google Scholar
Wang, J. and Zabaras, N. (2005), ‘Hierarchical Bayesian models for inverse problems in heat conduction’, Inverse Problems 21, 183206.Google Scholar
Wasilkowski, G. W. and Wozniakowski, H. (1995), ‘Explicit cost bounds of algorithms for multivariate tensor product problems’, J. Complexity 11, 156.Google Scholar
Webster, C. G. (2007), Sparse grid stochastic collocation techniques for the numerical solution of partial differential equations with random input data. PhD thesis, Florida State University.Google Scholar
Webster, C. G., Zhang, G. and Gunzburger, M. (2013), ‘An adaptive sparse-grid iterative ensemble Kalman filter approach for parameter field estimation’, Internat. J. Comput. Math., to appear.Google Scholar
Wiener, N. (1938), ‘The homogeneous chaos’, Amer. J. Math. 60, 897936.Google Scholar
Winter, C. L. and Tartakovsky, D. M. (2002), ‘Groundwater flow in heterogeneous composite aquifers’, Water Resour. Res. 38, 23.Google Scholar
Winter, C. L., Tartakovsky, D. M. and Guadagnini, A. (2002), ‘Numerical solutions of moment equations for flow in heterogeneous composite aquifers’, Water Resour. Res. 38, 13.Google Scholar
Womeldorff, G., Peterson, J., Gunzburger, M. and Ringler, T. (2013), ‘Unified matching grids for multidomain multiphysics simulations’, SIAM J. Sci. Comput. 35, A2781A2806.Google Scholar
Xiu, D. (2009), ‘Fast numerical methods for stochastic computations: A review’, Commun. Comput. Phys. 5, 242272.Google Scholar
Xiu, D. (2010), Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press.Google Scholar
Xiu, D. and Hesthaven, J. (2005), ‘High-order collocation methods for differential equations with random inputs’, SIAM J. Sci. Comput. 27, 11181139.Google Scholar
Xiu, D. and Karniadakis, G. E. (2002 a), ‘Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos’, Comput. Methods Appl. Mech. Engrg 191, 49274948.Google Scholar
Xiu, D. and Karniadakis, G. E. (2002 b), ‘The Wiener-Askey polynomial chaos for stochastic differential equations’, SIAM J. Sci. Comput. 24, 619644.Google Scholar
Xiu, D. and Karniadakis, G. E. (2003), ‘Modeling uncertainty in flow simulations via generalized polynomial chaos’, J. Comput. Phys. 187, 137167.Google Scholar
Xiu, D. and Tartakovsky, D. M. (2004), ‘A two-scale nonperturbative approach to uncertainty analysis of diffusion in random composites’, Multiscale Model. Simul. 2, 662674.Google Scholar
Yuen, K. V. and Beck, J. L. (2003), ‘Updating properties of nonlinear dynamical systems with uncertain input’, J. Engrg Mech. 129, 920.Google Scholar
Zabaras, N. and Samanta, D. (2004), ‘A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes’, Internat. J. Numer. Methods Engrg 60, 11031138.Google Scholar
Zhang, G. and Gunzburger, M. (2012), ‘Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data’, SIAM J. Numer. Anal. 50, 19221940.Google Scholar
Zhang, G., Lu, D., Ye, M., Gunzburger, M. and Webster, C. (2013), ‘An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling’, Water Resour. Res. 49, 68716892.Google Scholar
Zhang, G., Webster, C., Gunzburger, M. and Burkardt, J. (2014), A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection. ORNL Technical Report.Google Scholar