Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T20:43:18.384Z Has data issue: false hasContentIssue false

Mathematical and computational methods for semiclassical Schrödinger equations*

Published online by Cambridge University Press:  28 April 2011

Shi Jin
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA E-mail: [email protected]
Peter Markowich
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK E-mail: [email protected]
Christof Sparber
Affiliation:
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA E-mail: [email protected]

Extract

We consider time-dependent (linear and nonlinear) Schrödinger equations in a semiclassical scaling. These equations form a canonical class of (nonlinear) dispersive models whose solutions exhibit high-frequency oscillations. The design of efficient numerical methods which produce an accurate approximation of the solutions, or at least of the associated physical observables, is a formidable mathematical challenge. In this article we shall review the basic analytical methods for dealing with such equations, including WKB asymptotics, Wigner measure techniques and Gaussian beams. Moreover, we shall give an overview of the current state of the art of numerical methods (most of which are based on the described analytical techniques) for the Schrödinger equation in the semiclassical regime.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adalsteinsson, D. and Sethian, J. A. (1995), ‘A fast level set method for propagating interfaces’, J. Comput. Phys. 118, 269277.CrossRefGoogle Scholar
Alazard, T. and Carles, R. (2007), ‘Semi-classical limit of Schrödinger–Poisson equations in space dimension n ≥ 3’, J. Diff. Equations 233, 241275.CrossRefGoogle Scholar
Ambrosio, L. (2004), ‘Transport equation and Cauchy problem for BV vector fields’, Invent. Math. 158, 227260.CrossRefGoogle Scholar
Ariel, G., Engquist, B., Tanushev, N. and Tsai, R. (2011), Gaussian beam decomposition of high frequency wave fields using expectation-maximization. Submitted.CrossRefGoogle Scholar
Armbruster, D., Marthaler, D. and Ringhofer, C. (2003), ‘Kinetic and fluid model hierarchies for supply chains’, Multiscale Model. Simul. 2, 4361.CrossRefGoogle Scholar
Ashcroft, N. W. and Mermin, N. D. (1976), Solid State Physics, Rinehart and Winston, New York.Google Scholar
Bal, G. and Pinaud, O. (2006), ‘Accuracy of transport models for waves in random media’, Wave Motion 43, 561578.CrossRefGoogle Scholar
Bal, G. and Ryzhik, L. (2004), ‘Time splitting for the Liouville equation in a random medium’, Comm. Math. Sci. 2, 515534.CrossRefGoogle Scholar
Bal, G., Fannjiang, A., Papanicolaou, G. and Ryzhik, L. (1999 a), ‘Radiative transport in a periodic structure’, J. Statist. Phys. 95, 479494.CrossRefGoogle Scholar
Bal, G., Keller, J. B., Papanicolaou, G. and Ryzhik, L. (1999 b), ‘Transport theory for acoustic waves with reflection and transmission at interfaces’, Wave Motion 30, 303327.CrossRefGoogle Scholar
Bal, G., Komorowski, T. and Ryzhik, L. (2010), ‘Kinetic limits for waves in a random medium’, Kinetic and Related Models 3, 529644.CrossRefGoogle Scholar
Bao, W. and Shen, J. (2005), ‘A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates’, SIAM J. Sci. Comput. 26, 20102028.CrossRefGoogle Scholar
Bao, W., Jaksch, D. and Markowich, P. A. (2003 a), ‘Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation’, J. Comput. Phys. 187, 318342.CrossRefGoogle Scholar
Bao, W., Jaksch, D. and Markowich, P. A. (2004), ‘Three dimensional simulation of jet formation in collapsing condensates’, J. Phys. B: At. Mol. Opt. Phys. 37, 329343.CrossRefGoogle Scholar
Bao, W., Jin, S. and Markowich, P. A. (2002), ‘On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime’, J. Comput. Phys. 175, 487524.CrossRefGoogle Scholar
Bao, W., Jin, S. and Markowich, P. A. (2003 b), ‘Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes’, SIAM J. Sci. Comput. 25, 2764.CrossRefGoogle Scholar
Bao, W., Wang, H. and Markowich, P. A. (2005), ‘Ground, symmetric and central vortex states in rotating Bose–Einstein condensates’, Comm. Math. Sci. 3, 5788.CrossRefGoogle Scholar
Ben Abdallah, N., Degond, P. and Gamba, I. M. (2002), ‘Coupling one-dimensional time-dependent classical and quantum transport models’, J. Math. Phys. 43, 124.CrossRefGoogle Scholar
Benamou, J.-D. (1999), ‘Direct computation of multivalued phase space solutions for Hamilton–Jacobi equations’, Comm. Pure Appl. Math. 52, 14431475.3.0.CO;2-Y>CrossRefGoogle Scholar
Benamou, J.-D. and Solliec, I. (2000), ‘An Eulerian method for capturing caustics’, J. Comput. Phys. 162, 132163.CrossRefGoogle Scholar
Benamou, J.-D., Lafitte, O., Sentis, R. and Solliec, I. (2003), ‘A geometrical optics-based numerical method for high frequency electromagnetic fields computations near fold caustics I’, J. Comput. Appl. Math. 156, 93125.CrossRefGoogle Scholar
Benedetto, D., Esposito, R. and Pulvirenti, M. (2004), ‘Asymptotic analysis of quantum scattering under mesoscopic scaling’, Asymptot. Anal. 40, 163187.Google Scholar
Bensoussan, A., Lions, J. L. and Papanicolaou, G. (1978), Asymptotic Analysis for Periodic Structures, Vol. 5, North-Holland.Google Scholar
Bloch, F. (1928), ‘Uber die Quantenmechanik der Elektronen in Kristallgittern’, Z. Phys. 52, 555600.CrossRefGoogle Scholar
Bouchut, F., Jin, S. and Li, X. (2003), ‘Numerical approximations of pressureless and isothermal gas dynamics’, SIAM J. Numer. Anal. 41, 135158.CrossRefGoogle Scholar
Bougacha, S., Akian, J.-L. and Alexandre, R. (2009), ‘Gaussian beams summation for the wave equation in a convex domain’, Comm. Math. Sci. 7, 9731008.Google Scholar
Brenier, Y. and Corrias, L. (1998), ‘A kinetic formulation for multi-branch entropy solutions of scalar conservation laws’, Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 169190.CrossRefGoogle Scholar
Carles, R. (2000), ‘Geometric optics with caustic crossing for some nonlinear Schrödinger equations’, Indiana Univ. Math. J. 49, 475551.CrossRefGoogle Scholar
Carles, R. (2001), ‘Remarques sur les mesures de Wigner’, CR Acad. Sci. Paris Sér. I: Math. 332, 981984.CrossRefGoogle Scholar
Carles, R. (2007 a), ‘Geometric optics and instability for semi-classical Schrödinger equations’, Arch. Ration. Mech. Anal. 183, 525553.CrossRefGoogle Scholar
Carles, R. (2007 b), ‘WKB analysis for nonlinear Schrödinger equations with potential’, Comm. Math. Phys. 269, 195221.CrossRefGoogle Scholar
Carles, R. (2008), Semi-Classical Analysis for Nonlinear Schrödinger Equations, World Scientific.CrossRefGoogle Scholar
Carles, R. and Gosse, L. (2007), ‘Numerical aspects of nonlinear Schrödinger equations in the presence of caustics’, Math. Models Methods Appl. Sci. 17, 1531– 1553.CrossRefGoogle Scholar
Carles, R., Markowich, P. A. and Sparber, C. (2004), ‘Semiclassical asymptotics for weakly nonlinear Bloch waves’, J. Statist. Phys. 117, 343375.CrossRefGoogle Scholar
Cazenave, T. (2003), Semilinear Schrödinger Equations, Vol. 10 of Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, New York University.Google Scholar
Cervený, V. (2001), Seismic Ray Theory, Cambridge University Press.CrossRefGoogle Scholar
Chan, T. F. and Shen, L. (1987), ‘Stability analysis of difference scheme for variable coefficient Schrödinger type equations’, SIAM J. Numer. Anal. 24, 336349.CrossRefGoogle Scholar
Chan, T., Lee, D. and Shen, L. (1986), ‘Stable explicit schemes for equations of the Schrödinger type’, SIAM J. Numer. Anal. 23, 274281.CrossRefGoogle Scholar
Cheng, L.-T., Kang, M., Osher, S., Shim, H. and Tsai, Y.-H. (2004), ‘Reflection in a level set framework for geometric optics’, CMES Comput. Model. Eng. Sci. 5, 347360.Google Scholar
Cheng, L.-T., Liu, H. and Osher, S. (2003), ‘Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations’, Comm. Math. Sci. 1, 593621.CrossRefGoogle Scholar
Courant, R. and Hilbert, D. (1962), Methods of Mathematical Physics, Vol. 2, Interscience.Google Scholar
Crandall, M. G. and Lions, P.-L. (1983), ‘Viscosity solutions of Hamilton–Jacobi equations’, Trans. Amer. Math. Soc. 277, 142.CrossRefGoogle Scholar
Degond, P., Jin, S. and Tang, M. (2008), ‘On the time splitting spectral method for the complex Ginzburg–Landau equation in the large time and space scale limit’, SIAM J. Sci. Comput. 30, 24662487.CrossRefGoogle Scholar
Delfour, M., Fortin, M. and Payre, G. (1981), ‘Finite-difference solutions of a nonlinear Schrödinger equation’, J. Comput. Phys. 44, 277288.CrossRefGoogle Scholar
Dell'Antonio, G. F. (1983), ‘Large time, small coupling behaviour of a quantum particle in a random field’, Ann. Inst. H. Poincaré Sect. A (NS) 39, 339384.Google Scholar
DiPerna, R. J. and Lions, P.-L. (1989), ‘Ordinary differential equations, transport theory and Sobolev spaces’, Invent. Math. 98, 511547.CrossRefGoogle Scholar
Dörfler, W. (1998), ‘A time- and space-adaptive algorithm for the linear time dependent Schrödinger equation’, Numer. Math. 73, 419448.Google Scholar
Drukker, K. (1999), ‘Basics of surface hopping in mixed quantum/classical simulations’, J. Comput. Phys. 153, 225272.CrossRefGoogle Scholar
Duistermaat, J. J. (1996), Fourier Integral Operators, Vol. 130 of Progress in Mathematics, Birkhäuser.Google Scholar
Dujardin, G. and Faou, E. (2007 a), ‘Long time behavior of splitting methods applied to the linear Schrödinger equation’, CR Math. Acad. Sci. Paris 344, 8992.CrossRefGoogle Scholar
Dujardin, G. and Faou, E. (2007 b), ‘Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential’, Numer. Math. 108, 223262.CrossRefGoogle Scholar
Engquist, B. and Runborg, O. (1996), ‘Multi-phase computations in geometrical optics’, J. Comput. Appl. Math. 74, 175192. TICAM Symposium (Austin, TX, 1995).CrossRefGoogle Scholar
Engquist, B. and Runborg, O. (2003), Computational high frequency wave propagation. In Acta Numerica, Vol. 12, Cambridge University Press, pp. 181266.Google Scholar
Erdös, L. and Yau, H.-T. (2000), ‘Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation’, Comm. Pure Appl. Math. 53, 667735.3.0.CO;2-5>CrossRefGoogle Scholar
Faou, E. and Grebert, B. (2010), Resonances in long time integration of semi linear Hamiltonian PDEs. Preprint available at: www.irisa.fr/ipso/perso/faou/.Google Scholar
Fermanian Kammerer, C. and Lasser, C. (2003), ‘Wigner measures and codimension two crossings’, J. Math. Phys. 44, 507527.CrossRefGoogle Scholar
Flaschka, H., Forest, M. G. and McLaughlin, D. W. (1980), ‘Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation’, Comm. Pure Appl. Math. 33, 739784.CrossRefGoogle Scholar
Fomel, S. and Sethian, J. A. (2002), ‘Fast-phase space computation of multiple arrivals’, Proc. Nat. Acad. Sci. USA 99, 73297334.CrossRefGoogle ScholarPubMed
Fornberg, B. (1996), A Practical Guide to Pseudospectral Methods, Vol. 1 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.Google Scholar
Fouque, J.-P., Garnier, J., Papanicolaou, G. and Sølna, K. (2007), Wave Propagation and Time Reversal in Randomly Layered Media, Vol. 56 of Stochastic Modelling and Applied Probability, Springer.Google Scholar
Fröhlich, J. and Spencer, T. (1983), ‘Absence of diffusion in the Anderson tight binding model for large disorder or low energy’, Comm. Math. Phys. 88, 151184.CrossRefGoogle Scholar
Gauckler, L. and Lubich, C. (2010), ‘Splitting integrators for nonlinear Schrödinger equations over long times’, Found. Comput. Math. 10, 275302.CrossRefGoogle Scholar
Gérard, P., Markowich, P. A., Mauser, N. J. and Poupaud, F. (1997), ‘Homogenization limits and Wigner transforms’, Comm. Pure Appl. Math. 50, 323379.3.0.CO;2-C>CrossRefGoogle Scholar
Gosse, L. (2002), ‘Using K-branch entropy solutions for multivalued geometric optics computations’, J. Comput. Phys. 180, 155182.CrossRefGoogle Scholar
Gosse, L. (2006), ‘Multiphase semiclassical approximation of the one-dimensional harmonic crystal I: The periodic case’, J. Phys. A 39, 1050910521.CrossRefGoogle Scholar
Gosse, L. and James, F. (2002), ‘Convergence results for an inhomogeneous system arising in various high frequency approximations’, Numer. Math. 90, 721753.CrossRefGoogle Scholar
Gosse, L. and Markowich, P. A. (2004), ‘Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice I: Homogeneous problems’, J. Comput. Phys. 197, 387417.CrossRefGoogle Scholar
Gosse, L. and Mauser, N. J. (2006), ‘Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice III: From ab initio models to WKB for Schrödinger–Poisson’, J. Comput. Phys. 211, 326346.CrossRefGoogle Scholar
Gosse, L., Jin, S. and Li, X. (2003), ‘Two moment systems for computing multiphase semiclassical limits of the Schrödinger equation’, Math. Models Methods Appl. Sci. 13, 16891723.CrossRefGoogle Scholar
Granastein, V. L., Parker, R. K. and Armstrong, C. (1999), ‘Vacuum electronics at the dawn of the twenty-first century’, Proc. IEEE 87, 702716.CrossRefGoogle Scholar
Grenier, E. (1998), ‘Semiclassical limit of the nonlinear Schrödinger equation in small time’, Proc. Amer. Math. Soc. 126, 523530.CrossRefGoogle Scholar
Guillot, J.-C., Ralston, J. and Trubowitz, E. (1988), ‘Semiclassical asymptotics in solid-state physics’, Comm. Math. Phys. 116, 401415.CrossRefGoogle Scholar
Hagedorn, G. A. (1994), ‘Molecular propagation through electron energy level crossings’, Mem. Amer. Math. Soc. 111, #536.Google Scholar
Heller, E. J. (1981), ‘Frozen Gaussians: A very simple semiclassical approximation’, J. Chem. Phys. 75, 29232931.CrossRefGoogle Scholar
Heller, E. J. (2006), ‘Guided Gaussian wave packets’, Acc. Chem. Res. 39, 127134.CrossRefGoogle ScholarPubMed
Herman, M. and Kluk, E. (1984), ‘A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations’, J. Chem. Phys. 91, 29232931.Google Scholar
Hill, N. (1990), ‘Gaussian beam migration’, Geophysics 55, 14161428.CrossRefGoogle Scholar
Ho, T. G., Landau, L. J. and Wilkins, A. J. (1993), ‘On the weak coupling limit for a Fermi gas in a random potential’, Rev. Math. Phys. 5, 209298.CrossRefGoogle Scholar
Horenko, I., Salzmann, C., Schmidt, B. and Schuütte, C. (2002), ‘Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phasespace packets’, J. Chem. Phys. 117, 11075.CrossRefGoogle Scholar
Hörmander, L. (1985), The Analysis of Linear Partial Differential Operators III, Springer.Google Scholar
Huang, Z., Jin, S., Markowich, P. A. and Sparber, C. (2007), ‘A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials’, SIAM J. Sci. Comput. 29, 515538.CrossRefGoogle Scholar
Huang, Z., Jin, S., Markowich, P. A. and Sparber, C. (2008), ‘Numerical simulation of the nonlinear Schrödinger equation with multidimensional periodic potentials’, Multiscale Model. Simul. 7, 539564.CrossRefGoogle Scholar
Huang, Z., Jin, S., Markowich, P. A. and Sparber, C. (2009), ‘On the Bloch decomposition based spectral method for wave propagation in periodic media’, Wave Motion 46, 1528.CrossRefGoogle Scholar
Huang, Z., Jin, S., Markowich, P. A., Sparber, C. and Zheng, C. (2005), ‘A timesplitting spectral scheme for the Maxwell–Dirac system’, J. Comput. Phys. 208, 761789.CrossRefGoogle Scholar
Jiang, G. and Tadmor, E. (1998), ‘Nonoscillatory central schemes for multidimensional hyperbolic conservation laws’, SIAM J. Sci. Comput. 19, 18921917.CrossRefGoogle Scholar
Jin, S. (2009), Recent computational methods for high frequency waves in heterogeneous media. In Industrial and Applied Mathematics in China, Vol. 10 of Ser. Contemp. Appl. Math. CAM, Higher Education Press, Beijing, pp. 4964.CrossRefGoogle Scholar
Jin, S. and Li, X. (2003), ‘Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner’, Phys. D 182, 4685.CrossRefGoogle Scholar
Jin, S. and Liao, X. (2006), ‘A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media’, J. Hyperbolic Diff. Eqn. 3, 741777.CrossRefGoogle Scholar
Jin, S. and Novak, K. A. (2006), ‘A semiclassical transport model for thin quantum barriers’, Multiscale Model. Simul. 5, 10631086.CrossRefGoogle Scholar
Jin, S. and Novak, K. A. (2007), ‘A semiclassical transport model for two-dimensional thin quantum barriers’, J. Comput. Phys. 226, 16231644.CrossRefGoogle Scholar
Jin, S. and Novak, K. A. (2010), ‘A coherent semiclassical transport model for purestate quantum scattering’, Comm. Math. Sci. 8, 253275.CrossRefGoogle Scholar
Jin, S. and Osher, S. (2003), ‘A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDEs and Hamilton–Jacobi equations’, Comm. Math. Sci. 1, 575591.CrossRefGoogle Scholar
Jin, S. and Wen, X. (2005), ‘Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials’, Comm. Math. Sci. 3, 285315.CrossRefGoogle Scholar
Jin, S. and Wen, X. (2006 a), ‘A Hamiltonian-preserving scheme for the Liouville equation of geometrical optics with partial transmissions and reflections’, SIAM J. Numer. Anal. 44, 18011828.CrossRefGoogle Scholar
Jin, S. and Wen, X. (2006 b), ‘Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds’, J. Comput. Phys. 214, 672697.CrossRefGoogle Scholar
Jin, S. and Xin, Z. (1998), ‘Numerical passage from systems of conservation laws to Hamilton–Jacobi equations, relaxation schemes’, SIAM J. Numer. Anal. 35, 23852404.CrossRefGoogle Scholar
Jin, S. and Yang, X. (2008), ‘Computation of the semiclassical limit of the Schrödinger equation with phase shift by a level set method’, J. Sci. Comput. 35, 144169.CrossRefGoogle Scholar
Jin, S. and Yin, D. (2008 a), ‘Computation of high frequency wave diffraction by a half plane via the Liouville equation and geometric theory of diffraction’, Comm. Comput. Phys. 4, 11061128.Google Scholar
Jin, S. and Yin, D. (2008 b), ‘Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction’, J. Comput. Phys. 227, 61066139.CrossRefGoogle Scholar
Jin, S. and Yin, D. (2011), ‘Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction’, Kinetic and Related Models 4, 295316.CrossRefGoogle Scholar
Jin, S., Levermore, C. D. and McLaughlin, D. W. (1999), ‘The semiclassical limit of the defocusing NLS hierarchy’, Comm. Pure Appl. Math. 52, 613654.3.0.CO;2-L>CrossRefGoogle Scholar
Jin, S., Liao, X. and Yang, X. (2008 a), ‘Computation of interface reflection and regular or diffuse transmission of the planar symmetric radiative transfer equation with isotropic scattering and its diffusion limit’, SIAM J. Sci. Comput. 30, 19922017.CrossRefGoogle Scholar
Jin, S., Liu, H., Osher, S. and Tsai, R. (2005 a), ‘Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems’, J. Comput. Phys. 210, 497518.CrossRefGoogle Scholar
Jin, S., Liu, H., Osher, S. and Tsai, Y.-H. R. (2005 b), ‘Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation’, J. Comput. Phys. 205, 222241.CrossRefGoogle Scholar
Jin, S., Markowich, P. A. and Zheng, C. (2004), ‘Numerical simulation of a generalized Zakharov system’, J. Comput. Phys. 201, 376395.CrossRefGoogle Scholar
Jin, S., Qi, P. and Zhang, Z. (2011), ‘An Eulerian surface hopping method for the Schrödinger equation with conical crossings’, Multiscale Model. Simul. 9, 258281.CrossRefGoogle Scholar
Jin, S., Wu, H. and Yang, X. (2008 b), ‘Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations’, Comm. Math. Sci. 6, 9951020.CrossRefGoogle Scholar
Jin, S., Wu, H. and Yang, X. (2010 a), ‘A numerical study of the Gaussian beam methods for Schrödinger–Poisson equations’, J. Comput. Math. 28, 261272.CrossRefGoogle Scholar
Jin, S., Wu, H. and Yang, X. (2011), ‘Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime’, Comm. Comput. Phys. 9, 668687.CrossRefGoogle Scholar
Jin, S., Wu, H., Yang, X. and Huang, Z. (2010 b), ‘Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials’, J. Comput. Phys. 229, 48694883.CrossRefGoogle Scholar
Kamvissis, S., McLaughlin, K. D. T.-R. and Miller, P. D. (2003), Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154 of Annals of Mathematics Studies, Princeton University Press.Google Scholar
Kay, K. (1994), ‘Integral expressions for the semi-classical time-dependent propagator’, J. Chem. Phys. 100, 4437–4392.CrossRefGoogle Scholar
Kay, K. (2006), ‘The Herman–Kluk approximation: Derivation and semiclassical corrections’, J. Chem. Phys. 322, 312.Google Scholar
Keller, J. B. and Lewis, R. M. (1995), Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations. In Surveys in Applied Mathematics, Vol. 1, Plenum, pp. 182.CrossRefGoogle Scholar
Kitada, H. (1980), ‘On a construction of the fundamental solution for Schrödinger equations’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 193226.Google Scholar
Klein, C. (2008), ‘Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equations’, Electron. Trans. Numer. Anal. 29, 116– 135.Google Scholar
Krasny, R. (1986), ‘A study of singularity formation in a vortex sheet by the pointvortex approximation’, J. Fluid Mech. 167, 6593.CrossRefGoogle Scholar
Kube, S., Lasser, C. and Weber, M. (2009), ‘Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics’, J. Comput. Phys. 228, 19471962.CrossRefGoogle Scholar
Landau, L. (1932), ‘Zur Theorie der Energieübertragung II’, Physics of the Soviet Union 2, 4651.Google Scholar
Lasser, C. and Teufel, S. (2005), ‘Propagation through conical crossings: An asymptotic semigroup’, Comm. Pure Appl. Math. 58, 11881230.CrossRefGoogle Scholar
Lasser, C., Swart, T. and Teufel, S. (2007), ‘Construction and validation of a rigorous surface hopping algorithm for conical crossings’, Comm. Math. Sci. 5, 789814.CrossRefGoogle Scholar
Lax, P. D. (1957), ‘Asymptotic solutions of oscillatory initial value problems’, Duke Math. J. 24, 627646.CrossRefGoogle Scholar
Leimkuhler, B. and Reich, S. (2004), Simulating Hamiltonian Dynamics, Vol. 14 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.Google Scholar
Leung, S. and Qian, J. (2009), ‘Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime’, J. Comput. Phys. 228, 29512977.CrossRefGoogle Scholar
Leung, S., Qian, J. and Burridge, R. (2007), ‘Eulerian Gaussian beams for high frequency wave propagation’, Geophysics 72, 6176.CrossRefGoogle Scholar
Levermore, C. (1996), ‘Moment closure hierarchies for kinetic theories’, J. Statist. Phys. 83, 10211065.CrossRefGoogle Scholar
Li, X., Wöhlbier, J. G., Jin, S. and Booske, J. (2004), ‘An Eulerian method for computing multi-valued solutions to the Euler–Poisson equations and applications to wave breaking in klystrons’, Phys. Rev. E 70, 016502.CrossRefGoogle Scholar
Lions, P.-L. and Paul, T. (1993), ‘Sur les mesures de Wigner’, Rev. Mat. Iberoamericana 9, 553618.CrossRefGoogle Scholar
Liu, H. and Ralston, J. (2010), ‘Recovery of high frequency wave fields from phase space-based measurements’, Multiscale Model. Simul. 8, 622644.CrossRefGoogle Scholar
Liu, H. and Tadmor, E. (2002), ‘Semi-classical limit of the nonlinear Schrödinger– Poisson equation with sub-critical initial data’, Methods Appl. Anal. 9, 517532.CrossRefGoogle Scholar
Liu, H. and Wang, Z. (2007), ‘A field-space-based level set method for computing multi-valued solutions to 1D Euler–Poisson equations’, J. Comput. Phys. 225, 591614.CrossRefGoogle Scholar
Liu, H., Runborg, O. and Tanushev, N. (2011), Error estimates for Gaussian beam superpositions. Submitted.CrossRefGoogle Scholar
Lu, J. and Yang, X. (2011), ‘Frozen Gaussian approximation for high frequency wave propagation’, Commun. Math. Sci. 9, 663683.CrossRefGoogle Scholar
Lubich, C. (2008), ‘On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations’, Math. Comp. 77, 21412153.CrossRefGoogle Scholar
Majda, A. J., Majda, G. and Zheng, Y. X. (1994), ‘Concentrations in the one-dimensional Vlasov–Poisson equations I: Temporal development and non-unique weak solutions in the single component case’, Phys. D 74, 268300.CrossRefGoogle Scholar
Markowich, P. A. and Mauser, N. J. (1993), ‘The classical limit of a self-consistent quantum-Vlasov equation in 3D’, Math. Models Methods Appl. Sci. 3, 109– 124.CrossRefGoogle Scholar
Markowich, P. A. and Poupaud, F. (1999), ‘The pseudo-differential approach to finite differences revisited’, Calcolo 36, 161186.CrossRefGoogle Scholar
Markowich, P. A., Mauser, N. J. and Poupaud, F. (1994), ‘A Wigner-function approach to (semi)classical limits: Electrons in a periodic potential’, J. Math. Phys. 35, 10661094.CrossRefGoogle Scholar
Markowich, P. A., Pietra, P. and Pohl, C. (1999), ‘Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit’, Numer. Math. 81, 595630.CrossRefGoogle Scholar
Maslov, V., ed. (1981), Semiclassical Approximations in Quantum Mechanics, Reidel, Dordrecht.CrossRefGoogle Scholar
McLachlan, R. I. and Quispel, G. R. W. (2002), Splitting methods. In Acta Numerica, Vol. 11, Cambridge University Press, pp. 341434.Google Scholar
Miller, L. (2000), ‘Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary’, J. Math. Pures Appl. (9) 79, 227269.CrossRefGoogle Scholar
Motamed, M. and Runborg, O. (2010), ‘Taylor expansion and discretization errors in Gaussian beam superposition’, Wave Motion 47, 421439.CrossRefGoogle Scholar
Nier, F. (1995), ‘Asymptotic analysis of a scaled Wigner equation and quantum scattering’, Transport Theory Statist. Phys. 24, 591628.CrossRefGoogle Scholar
Nier, F. (1996), ‘A semi-classical picture of quantum scattering’, Ann. Sci. École Norm. Sup. (4) 29, 149183.CrossRefGoogle Scholar
Osher, S. and Sethian, J. A. (1988), ‘Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations’, J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
Osher, S., Cheng, L.-T., Kang, M., Shim, H. and Tsai, Y.-H. (2002), ‘Geometric optics in a phase-space-based level set and Eulerian framework’, J. Comput. Phys. 179, 622648.CrossRefGoogle Scholar
Panati, G., Spohn, H. and Teufel, S. (2006), Motion of electrons in adiabatically perturbed periodic structures. In Analysis, Modeling and Simulation of Mul-tiscale Problems, Springer, pp. 595617.CrossRefGoogle Scholar
Pathria, D. and Morris, J. (1990), ‘Pseudo-spectral solution of nonlinear Schrödinger equations’, J. Comput. Phys. 87, 108125.CrossRefGoogle Scholar
Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, M. (1999), ‘A PDE-based fast local level set method’, J. Comput. Phys. 155, 410438.CrossRefGoogle Scholar
Perthame, B. and Simeoni, C. (2001), ‘A kinetic scheme for the Saint-Venant system with a source term’, Calcolo 38, 201231.CrossRefGoogle Scholar
Popov, M. M. (1982), ‘A new method of computation of wave fields using Gaussian beams’, Wave Motion 4, 8597.CrossRefGoogle Scholar
Qian, J. and Ying, L. (2010), ‘Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation’, J. Comput. Phys. 229, 78487873.CrossRefGoogle Scholar
Ralston, J. (1982), Gaussian beams and the propagation of singularities. In Studies in Partial Differential Equations, Vol. 23 of MAA Stud. Math., Mathematical Association of America, pp. 206248.Google Scholar
Reed, M. and Simon, B. (1975), Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press.Google Scholar
Reed, M. and Simon, B. (1976), Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press.Google Scholar
Robert, D. (2010), ‘On the Herman–Kluk semiclassical approximation’, Rev. Math. Phys. 22, 11231145.CrossRefGoogle Scholar
Runborg, O. (2000), ‘Some new results in multiphase geometrical optics’, M2AN Math. Model. Numer. Anal. 34, 12031231.CrossRefGoogle Scholar
Ryzhik, L., Papanicolaou, G. and Keller, J. B. (1996), ‘Transport equations for elastic and other waves in random media’, Wave Motion 24, 327370.CrossRefGoogle Scholar
Shapere, A. and Wilczek, F., eds (1989), Geometric Phases in Physics, Vol. 5 of Advanced Series in Mathematical Physics, World Scientific.Google Scholar
Sholla, D. and Tully, J. (1998), ‘A generalized surface hopping method’, J. Chem. Phys. 109, 7702.CrossRefGoogle Scholar
Sparber, C., Markowich, P. and Mauser, N. (2003), ‘Wigner functions versus WKB-methods in multivalued geometrical optics’, Asymptot. Anal. 33, 153187.Google Scholar
Spohn, H. (1977), ‘Derivation of the transport equation for electrons moving through random impurities’, J. Statist. Phys. 17, 385412.CrossRefGoogle Scholar
Spohn, H. and Teufel, S. (2001), ‘Adiabatic decoupling and time-dependent Born– Oppenheimer theory’, Comm. Math. Phys. 224, 113132.CrossRefGoogle Scholar
Strikwerda, J. C. (1989), Finite Difference Schemes and Partial Differential Equations, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software.Google Scholar
Sulem, C. and Sulem, P.-L. (1999), The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Vol. 139 of Applied Mathematical Sciences, Springer.Google Scholar
Sundaram, G. and Niu, Q. (1999), ‘Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects’, Phys. Rev. B 59, 14915– 14925.CrossRefGoogle Scholar
Swart, T. and Rousse, V. (2009), ‘A mathematical justification for the Herman–Kluk propagator’, Comm. Math. Phys. 286, 725750.CrossRefGoogle Scholar
Taha, T. and Ablowitz, M. J. (1984), ‘Analytical and numerical aspects of certain nonlinear evolution equations II: Numerical, nonlinear Schrödinger equations’, J. Comput. Phys. 55, 203230.CrossRefGoogle Scholar
Tanushev, N. M. (2008), ‘Superpositions and higher order Gaussian beams’, Comm. Math. Sci. 6, 449475.CrossRefGoogle Scholar
Tanushev, N. M., Engquist, B. and Tsai, R. (2009), ‘Gaussian beam decomposition of high frequency wave fields’, J. Comput. Phys. 228, 88568871.CrossRefGoogle Scholar
Tartar, L. (1990), ‘H-measures: A new approach for studying homogenisation, oscillations and concentration effects in partial differential equations’, Proc. Roy. Soc. Edinburgh Sect. A 115, 193230.CrossRefGoogle Scholar
Teufel, S. (2003), Adiabatic Perturbation Theory in Quantum Dynamics, Vol. 1821 of Lecture Notes in Mathematics, Springer.Google Scholar
Tully, J. (1990), ‘Molecular dynamics with electronic transitions’, J. Chem. Phys. 93, 10611071.CrossRefGoogle Scholar
Tully, J. and Preston, R. (1971), ‘Trajectory surface hopping approach to non-adiabatic molecular collisions: The reaction of h+ with d2’, J. Chem. Phys. 55, 562572.CrossRefGoogle Scholar
Wei, D., Jin, S., Tsai, R. and Yang, X. (2010), ‘A level set method for the semiclas-sical limit of the Schrödinger equation with discontinuous potentials’, Comm. Comput. Phys. 229, 74407455.CrossRefGoogle Scholar
Wen, X. (2009), ‘Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients II: Some related binomial coefficient inequalities’, J. Comput. Math. 27, 474483.CrossRefGoogle Scholar
Wen, X. (2010), ‘High order numerical methods to three dimensional delta function integrals in level set methods’, SIAM J. Sci. Comput. 32, 12881309.CrossRefGoogle Scholar
Wen, X. and Jin, S. (2009), ‘The l1-stability of a Hamiltonian-preserving scheme for the Liouville equation with discontinuous potentials’, J. Comput. Math. 27, 4567.Google Scholar
Whitham, G. (1974), Linear and Nonlinear Waves, Wiley-Interscience.Google Scholar
Wigner, E. P. (1932), ‘On the quantum correction for thermodynamic equilibrium’, Phys. Rev. 40, 749759.CrossRefGoogle Scholar
Wilcox, C. H. (1978), ‘Theory of Bloch waves’, J. Anal. Math. 33, 146167.CrossRefGoogle Scholar
Wöhlbier, J. G., Jin, S. and Sengele, S. (2005), ‘Eulerian calculations of wave breaking and multivalued solutions in a traveling wave tube’, Physics of Plasmas 12, 023106023113.CrossRefGoogle Scholar
Wu, L. (1996), ‘Dufort–Frankel-type methods for linear and nonlinear Schrödinger equations’, SIAM J. Numer. Anal. 33, 15261533.CrossRefGoogle Scholar
Yin, D. and Zheng, C. (2011), Composite Gaussian beam approximation method for multi-phased wave functions. Submitted.Google Scholar
Ying, L. and Candés, E. J. (2006), ‘The phase flow method’, J. Comput. Phys. 220, 184215.CrossRefGoogle Scholar
Zener, C. (1932), ‘Non-adiabatic crossing of energy levels’, Proc. Royal Soc. London, Ser. A 137, 692702.Google Scholar
Zhang, P. (2002), ‘Wigner measure and the semiclassical limit of Schrödinger– Poisson equations’, SIAM J. Math. Anal. 34, 700718.CrossRefGoogle Scholar
Zheng, C. (2006), ‘Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations’, J. Comput. Phys. 215, 552565.CrossRefGoogle Scholar