Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T15:48:39.123Z Has data issue: false hasContentIssue false

Numerical geometry of surfaces

Published online by Cambridge University Press:  07 November 2008

Malcolm Sabin
Affiliation:
Department of Industrial Studies, University of Liverpool, England E-mail: [email protected]

Abstract

The mathematical techniques used within Computer Aided Design software for the representation and calculation of surfaces of objects are described. First the main techniques for dealing with surfaces as computational objects are described, and then the methods for enquiring of such surfaces the properties required for their assessment and manufacture.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allgower, E.L. and Georg, K. (1993), ‘Continuation and path following’, Acta Numerica 1993, Cambridge University Press (Cambridge), 164.Google Scholar
Aomura, S. and Uehara, T. (1990), ‘Self-intersection of an offset surface’, Comput. Aided Des. 22, 417422.CrossRefGoogle Scholar
Armit, A.P. (1971), ‘Curve and surface design: using multipatch and multiobject design systems’, Comput. Aided Des. 3, 312.CrossRefGoogle Scholar
Bajaj, C.L. (1989), ‘Geometric modelling with algebraic surfaces’, in The Mathematics of Surfaces III (Handscomb, D.C., ed.), Clarendon (Oxford), 348.Google Scholar
Bajaj, C.L., Hoffman, C.M., Hopcroft, J.E. and Lynch, R.E. (1988), ‘Tracing surface intersections’, Comput. Aided Geom. Des. 5, 285308.CrossRefGoogle Scholar
Barnhill, R.E. (1974), ‘Smooth interpolation over triangles’, in Computer Aided Geometric Design (Barnhill, R.E. and Riesenfeld, R.F., eds), Academic Press (New York), 4570.CrossRefGoogle Scholar
Barnhill, R.E., Farin, G., Jordan, M. and Piper, B.R. (1987), ‘Surface/surface intersection’, Comput. Aided Geom. Des. 4, 316.CrossRefGoogle Scholar
Barnhill, R.E. and Riesenfeld, R.F., eds (1974), Computer Aided Geometric Design, Academic Press (New York).Google Scholar
Bell, C., Landi, B. and Sabin, M. (1974), ‘The programming and use of numerical control to machine sculptured surfaces’, in Proceedings 14th MTDR Conference, Macmillan (London), 233238.Google Scholar
Bezier, P. (1971) ‘An existing system in the automobile industry’, Proc. R. Soc. London A 321, 207218.Google Scholar
Biard, L. and Chenin, P. (1991), ‘Ray tracing rational parametricsurfaces’, in Curves and Surfaces, (Laurent, J., le Mehaute, A. and Schumaker, L.L., eds), Academic Press (New York), 3742.CrossRefGoogle Scholar
Bloor, M.I.G. and Wilson, M.J. (1989), ‘Generating blend surfacesusing partial differential equations’, Comput. Aided Des. 21, 165171.CrossRefGoogle Scholar
Bloor, M.I.G. and Wilson, M.J. (1990), ‘Representing PDE surfacesin terms of B-splines’, Comput. Aided Des. 22, 324331.CrossRefGoogle Scholar
de Boor, C. (1962), ‘Bicubic Spline Interpolation’, J. Math. Phys. 41, 212273.CrossRefGoogle Scholar
de Boor, C. (1987), ‘B-form basics’, in Geometric Modelling: Algorithms and New Trends (Farin, G., ed.), SIAM (Philadelphia), 131148.Google Scholar
de Boor, C. (1993a), B-Spline Basics in Fundamental Developments of Computer Aided Geometric Modelling (Piegl, L., ed.), Academic Press (New York), 327350.Google Scholar
de Boor, C. (1993b), ‘Multivariate piecewise polynomials’, Acta Numerica 1993, Cambridge University Press (Cambridge), 65110.Google Scholar
Burger, H. and Schaback, R. (1993), ‘A parallel multistage method for surface/surface intersection’, Comput. Aided Geom. Des. 10, 277292.CrossRefGoogle Scholar
Catmull, E. and Clark, J. (1978), ‘Recursively generated B-spline surfaces on arbitrary topological meshes’, Comput. Aided Des. 10, 350355.CrossRefGoogle Scholar
Cavendish, J.C. (1974), ‘Automatic triangulation of arbitrary planar domains for the FE method’, Int. J. Numer. Meth. Engrg 8, 679696.CrossRefGoogle Scholar
Cohn, P.M. (1961), Solid Geometry, Routledge and Kegan Paul (London).Google Scholar
Coolidge, J.L. (1963), A History of Geometrical Methods, rep. 1963 of 1938 book, Dover (New York).Google Scholar
Coons, S.A. (1967), ‘Surfaces for computer aided design of space forms’, MAC–TR–41, Massachusetts Institute of Technology.CrossRefGoogle Scholar
Dahmen, W. (1989) ‘Smooth piecewise quadric surfaces’, in Mathematical Methods in Computer Aided Geometric Design (Lyche, T. and Schumaker, L.L., eds), Academic Press (New York), 181194.CrossRefGoogle Scholar
Doo, D. and Sabin, M.A. (1978), ‘Behaviour of recursive division surfaces near extraordinary points’, Comput. Aided Des. 10, 356362.CrossRefGoogle Scholar
Duncan, J.P. and Mair, S.G. (1980), Sculptured Surfaces in Engineering and Medicine, Cambridge University Press (Cambridge, UK).Google Scholar
Earnshaw, R.A., ed. (1985), Fundamental Algorithms for Computer Graphics, NATO ASI F17, Springer (Berlin).Google Scholar
Einar, H. and Skappel, E. (1973), ‘FORMELA: A general design and production system for sculptured products’, Comput. Aided Des. 5, 6876CrossRefGoogle Scholar
Eisenhart, L.P. (1960), Coordinate Geometry, 1938 repub 1960 Dover (New York).Google Scholar
Farin, G. (1982), ‘Designing C1 surfaces consisting of triangular cubic patches’, Comput. Aided Des. 14, 253256.CrossRefGoogle Scholar
Farin, G., ed. (1987), Geometric Modelling: Algorithms and New Trends, SIAM (Philadelphia).Google Scholar
Farin, G. (1988), Curves and Surfaces for Computer Aided Geometric Design, Academic Press (New York).Google Scholar
Farouki, R.T. (1987a), ‘Direct surface section evaluation’, in Geometric Modelling: Algorithms and New Trends (Farin, G., ed.), SIAM (Philadelphia), 319334.Google Scholar
Farouki, R.T. (1987b), ‘Numerical stability on geometric algorithms and representations’, in Mathematics of Surfaces III (Handscomb, D. C., ed.), 83114.Google Scholar
Farouki, R.T. and Rajan, V.T. (1987), ‘On the numerical conditioning of polynomials in Bernstein form’, Comput. Aided Geom. Des. 4, 191216.CrossRefGoogle Scholar
Farouki, R.T. and Rajan, V.T. (1988a), ‘Algorithms for polynomials “in Bernstein form“’, Comput. Aided Geom. Des. 5, 126.CrossRefGoogle Scholar
Farouki, R.T. and Rajan, V.T. (1988b), ‘On the numerical condition of algebraic curves and surfaces (part 1)’, Comput. Aided Geom. Des. 5, 215252.CrossRefGoogle Scholar
Faux, I.D. and Pratt, M.J. (1979), Computational Geometry for Designand Manufacture, Ellis Horwood (New York).Google Scholar
Ferguson, J. (1964) ‘Multivariable curve interpolation’, JACM 11, 221228.CrossRefGoogle Scholar
Ferguson, J. (1993), ‘F-methods for freeform curve and hypersurface definition’, in Fundamental Developments of Computer Aided Geometric Modelling (Piegl, L., ed.), Academic Press (New York), 99116.Google Scholar
Filip, D., Magedson, R. and Markot, R. (1986), ‘Surface algorithms using bounds on derivatives’, Comput. Aided Geom. Des. 3, 295312.CrossRefGoogle Scholar
Garrity, T. and Warren, J. (1989), ‘On computing the intersection of a pair of algebraic surfaces’, Comput. Aided Geom. Des. 6, 137154.CrossRefGoogle Scholar
Gauss, K.F. (1828), General Investigation of Curved Surfaces (Morehead, J.C. and Hiltebeitel, A.M., trans.), reprinted Raven Press, 1965.Google Scholar
Gordon, W.J. (1969), ‘Spline blended surface interpolation through curve networks’, J. Math. Mech. 18, 10, 931952.Google Scholar
Gordon, W.J. and Riesenfeld, R.F. (1974), ‘B-spline curves and surfaces’, in Computer Aided Geometric Design (Barnhill, R.E. and Riesenfeld, R.F., eds), Academic Press (New York), 95126.CrossRefGoogle Scholar
Gregory, J.A., ed. (1986), The Mathematics of Surfaces, Clarendon (Oxford), 217232.Google Scholar
Griffiths, H.B. (1976), Surfaces, Cambridge University Press (Cambridge).Google Scholar
Hall, R. (1990), ‘Algorithms for realistic image synthesis’, Computer Graphics Techniques, (Rogers, D.F. and Earnshaw, R.A., eds), Springer (Berlin), 189231.CrossRefGoogle Scholar
Handscomb, D.C., ed. (1989), The Mathematics of Surfaces III, Clarendon Press (Oxford).Google Scholar
Hoffman, C. (1989), Geometric and Solid Modelling, Morgan Kaufmann (San Mateo, CA).Google Scholar
Hoffman, C. and Hopcroft, J. (1986), ‘Quadratic blending surfaces’, Comput. Aided Des. 18, 301306.CrossRefGoogle Scholar
Hoffman, C. and Hopcroft, J. (1987), ‘The potential method for blending surfaces and corners’, in Geometric Modelling: Algorithms and New Trends (Farin, G., ed.), SIAM (Philadelphia), 347366.Google Scholar
Hoschek, J. (1988), ‘Spline approximation of offset curve’, Comput. Aided Geom. Des. 5, 3340.CrossRefGoogle Scholar
Johnstone, J.K. (1993), ‘A new intersection algorithm for cyclides and swept surfaces using circle decomposition’, Comput. Aided Geom. Des. 10, 124CrossRefGoogle Scholar
Katz, S. and Sederberg, T.W. (1988), ‘Genus of the intersection curve of two rational surface patches’, Comput. Aided Geom. Des. 5, 253258.CrossRefGoogle Scholar
Kaufmann, A. (1991), ‘A distributed algorithm for surface/plane intersection’, in Curves and Surfaces (Laurent, J., le Mehaute, A. and Schumaker, L.L., eds), Academic Press (New York) 251254.CrossRefGoogle Scholar
Klass, R. (1980), ‘Correction of local surface irregularities using reflection lines’, Comput. Aided Des. 12, 7378.CrossRefGoogle Scholar
Koparkar, P.A. and Mudur, S.P. (1985), ‘Subdivision techniques for processing geometric objects’, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., ed.), NATO ASI F17, Springer (Berlin) 751801.CrossRefGoogle Scholar
Koparkar, P.A. and Mudur, S.P. (1986), ‘Generation of continuous smooth curves resulting from operations on parametric surface patches’, Comput. Aided Des. 18, 193206.CrossRefGoogle Scholar
Kriezis, G.A., Prakash, P.V. and Patrikalakis, N.M. (1990), ‘A method for intersecting algebraic surfaces with rational polynomial patches’, Comput. Aided Des. 22, 645654.CrossRefGoogle Scholar
Kriezis, G.A., Patrikalakis, N.M. and Wolter, F-E. (1992), ‘Topological and differential-equation methods for surface intersections’, Comput. Aided Des. 24, 4155.CrossRefGoogle Scholar
Lasser, D. (1986), ‘Intersection of parametric surfaces in the Bernstein-Bezier representation’, Comput. Aided Des. 18, 186192.CrossRefGoogle Scholar
Laurent, P-J., le Mehaute, A. and Schumaker, L.L. (1991), Curves and Surfaces, Academic Press (New York).Google Scholar
Liming, R.A. (1979) Mathematics for Computer Graphics, Aero.Google Scholar
Lyche, T. and Schumaker, L. L. (1989), Mathematical Methods in Computer Aided Geometric Design Academic Press (New York).Google Scholar
Markot, R.P. and Magedson, R.L. (1989), ‘Solutions of tangential surface and curve intersections’, Comput. Aided Des. 21, 421429.CrossRefGoogle Scholar
Markot, R.P. and Magedson, R.L. (1991), ‘Procedural method for evaluating the intersection curves of two parametric surfaces’, Comput. Aided Des. 23, 395404.CrossRefGoogle Scholar
Martin, R.R., ed. (1987), The Mathematics of Surfaces II, Clarendon (Oxford).Google Scholar
McCrea, W.H. (1960), Analytic Geometry of Three Dimensions, University Mathematical Texts, Oliver and Boyd (Edinburgh).Google Scholar
Middleditch, A. and Sears, K. (1985), ‘Blend surfaces for set-theoretic volume modelling systems’, SIGRAPH Comput. Graphics 19, 161170.CrossRefGoogle Scholar
de Montaudouin, Y. (1989), ‘Cross product of cones of revolution’, Comput. Aided Des. 21, 404.CrossRefGoogle Scholar
de Montaudouin, Y. (1991), ‘Resolution of P(x, y) = 0’, Comput. Aided Des. 23, 653654.CrossRefGoogle Scholar
Mullenheim, G. (1990), ‘Convergence of a surface/surface intersection algorithm’, Comput. Aided Geom. Des. 7, 415424.CrossRefGoogle Scholar
Mullenheim, G. (1991), ‘On determining start points for a surface/surface intersection’, Comput. Aided Geom. Des. 8, 401408.CrossRefGoogle Scholar
Nasri, A.H. (1987), ‘A polyhedral subdivision method for free-form surfaces’, ACM ToG 6, 2973.CrossRefGoogle Scholar
Nasri, A.H. (1991), ‘Boundary-corner control in recursive subdivision surfaces’, Comput. Aided Des. 23, 405410.CrossRefGoogle Scholar
Nielson, G.M. (1974), ‘Some piecewise polynomial alternatives to splines under tension’, in Computer Aided Geometric Design (Barnhill, R.E. and Riesenfeld, R.F., eds), Academic Press (New York) 209235.CrossRefGoogle Scholar
Nocedal, J. (1992), ‘Theory of algorithms for unconstrained optimization’, Acta Numerica 1992, Cambridge University Press (Cambridge), 199242Google Scholar
Ohkura, K. and Kakazu, Y. (1992), ‘Generalization of the potential method for blending three surfaces’, Comput. Aided Des. 24, 599610.CrossRefGoogle Scholar
Owen, J.C. and Rockwood, A.P. (1987), ‘Intersection of general implicit surfaces’, in Geometric Modelling: Algorithms and NewTrends (Farin, G., ed.), SIAM (Philadelphia), 335346.Google Scholar
Peng, Q.S. (1984), ‘An algorithm for finding the intersection lines between two B-spline surfaces’, Comput. Aided Des. 16, 191196.CrossRefGoogle Scholar
Peters, J. (1990), ‘Smooth mesh interpolation with cubic patches’, Comput. Aided Des. 22, 109120.CrossRefGoogle Scholar
Petersen, C.S. (1984), ‘Adaptive contouring of three-dimensional surfaces’, Comput. Aided Geom. Des. 1, 6174.CrossRefGoogle Scholar
Pham, B. (1992), ‘Offset curves and surfaces: a brief survey’, Comput. Aided Des. 24, 223229.CrossRefGoogle Scholar
Piegl, L. (1993), Fundamental Developments of Computer Aided Geometric Modelling, Academic Press (New York).Google Scholar
Polak, E. (1971), Computational Methods in Optimization, Academic Press (New York).Google Scholar
Pratt, M.J. and Geisow, A.D. (1986), ‘Surface/surface intersection problems’, in The Mathematics of Surfaces (Gregory, J.A., ed.) Clarendon (Oxford), 117142.Google Scholar
Riesenfeld, R.F. (1975), ‘On Chaikin's algorithm’, Comput. Graph. Image Proc. 4, 304310.CrossRefGoogle Scholar
Robertson, R.G. (1966), Descriptive Geometry, Pitman (London).Google Scholar
Rockwood, A. and Owen, J. (1985), ‘Blending surfaces in solid geometric modelling’, in Geometric Modelling: Algorithms and New Trends (Farin, G., ed.), SIAM (Philadelphia), 367384.Google Scholar
Rogers, D.F. and Earnshaw, R.A., eds, (1990), Computer Graphics Techniques, Springer (Berlin).CrossRefGoogle Scholar
Scherrer, P.K. and Hilberry, B.M. (1978), ‘Determining distance to a surface represented in piecewise fashion with surface patches’, Comput. Aided Des. 10, 320324.CrossRefGoogle Scholar
Schoenberg, I.J. (1946), ‘Contributions to the problem of approximation of equidistant data by analytic functions’, Quart. Appl. Math. 4, 4599.CrossRefGoogle Scholar
Sederberg, T.W. (1987), ‘Algebraic geometry for surface and solid modelling’, in Geometric Modelling: Algorithms and New Trends (Farin, G., ed.), SIAM (Philadelphia), 2942.Google Scholar
Sederberg, T.W. and Meyers, R.J. (1988), ‘Loop detection in surface patch intersections’, Comput. Aided Geom. Des. 5, 161172.CrossRefGoogle Scholar
Sederberg, T.W., Christiansen, H. and Katz, S. (1989), ‘Improved test forclosed loops in surface intersections’, Comput. Aided Des. 21, 505508.CrossRefGoogle Scholar
Sederberg, T.W. and Wang, X. (1987), ‘Rational hodographs’, Comput. Aided Geom. Des. 4, 333336.CrossRefGoogle Scholar
Storry, D.J.T. and Ball, A.A. (1989), ‘Design of an n-sided patchfrom Hermite boundary data’, Comput. Aided Geom. Des. 6, 111120.CrossRefGoogle Scholar
Sutherland, I.E., Sproull, R.F. and Schumaker, R.A. (1974), ‘A characterisation of ten hidden surface algorithms’, Comput. Surv. 6, 155.CrossRefGoogle Scholar
Vickers, G.W. (1977), ‘Computer-aided manufacture of marine propellors’, Comput. Aided Des. 9, 267274CrossRefGoogle Scholar
Woodwark, J., ed., (1989), Geometric Reasoning, Clarendon (Oxford).Google Scholar
Wright, M.H. (1992), ‘Interior methods for constrained optimization’, Acta Numerica 1992, Cambridge University Press (Cambridge), 341407.Google Scholar
Yang, C-G. (1987), ‘On speeding up ray tracing of B-spline surfaces’, Comput. Aided Des. 19, 122130.CrossRefGoogle Scholar